
Database and Data Mining

Project to build a Database
using PostgreSQL and Golang

Domain: Transmission Projects in Europe

Lukas Schirren, Fridtjof Damm

During this Project we built a Database and performed queries with data from
the Ten Year Network Development Plan (TYNDP). The ENTSO-E, the European
Network of Transmission System Operators, published in 2018 a list of future trans-
mission projects [1], which we used to build an ER-Model and extract result sets.
For our Database Management System(DBMS) we used ”PostgreSQL” and used
Golang to define tables and simple functions. The SQL Queries were performed
within the PgAdmin application.

Keywords Relational Database; Golang; PostgreSQL; Transmission Projects

1 Step by step

In the first step we analyzed the TYNDP-data from the Excel-Sheet and placed the columns in
entities for our Entity-Relationship Model (ERM). The data from the Excel sheet was divided
into eight parts for the respective entity to simplify the insertion of the data.

Then we wrote the code to define our database. For that, we used Golang and the pg-
package from Github [2]. We included the ”pg” package in a new package ”db”, where the eight
tables and their attributes were defined. Unfortunately we had to define for each table (here
implemented as structs) a ”create table”-function, since Golang does not yet have generics [3].
We run the program with go build and go run main.go. The code can be found on Github
[4].

After that we connected our Golang program to the PostgreSQL, which runs in a Docker-
Container. The PostgreSQL, a relational DBMS, is used to store the data. With the command
pgcli -h localhost -p 5432 -U postgres, an interface to access the database, could we
confirm that the process was successful.

We worked on simple functions to insert projects and investments within the Golang program.
But it is only possible to work with a single object. Since we later worked with the PgAdmin
application, those functions weren’t used intensively.

I tried to include the excel-data within the Golang code, but didn’t manage to include it
correctly. Since that is an important feature, this will be included in a future project.

2 Project for DBM1 November 2021

2 Database Design

We had a clear definition of the data that we include in our database, since we used a static
Excel sheet with 18 columns. We also knew what the purpose of the database was, since we
defined questions to our data beforehand. With that, we could already start to divide the given
data into tables and create an ERM. We had to make some changes to the data, since we had
to include NULL values and we also included two new keys to point on entities.

Entity Relationship Model We decided to split the 18 attributes up into 8 entities. The
most important entity is Investment with the primary key investment id, which is associated to
five other entities.

A Project can have one or many associated investments. The number of investments is
represented in the attribute Investments. A relation between project and investment is ”only
one” to ”one or many” [5], because an investment during its lifetime (it will be deleted when
finished) can only be associated to exactly one project. A transmission line is built in different
steps and the project is not finished until every investment is completed.

The primary key ProjectId from the entity project occurs as a foreign key in investments.The
attribute Promoter can have multiple promoters in one cell, divided by a semicolon.

The entities FromTo and Country have a one to one relation to investment. The primary
key for both of them is also a foreign key from investment. It’s not an ”only one” relation, since
transmission lines can be build between the same countries or cities.

One
-

Only One
-

Many
-

One or Many

Project

PK ProjectID

Name

Promoter

Investments

Description

Investment

PK InvestmentID

Name

FK ProjectID

FromTo

PK InvestmentID

From City

To City

From TSO

To TSO

Country

PK InvestmentID

Country1

Country2

Country3

Technology

PK InvestmentID

FK TypeID

Voltage

Type

PK TypeID

TypeCurrent

ElementType

Status

PK InvestmentID

FK StatusID

ExpectedYear

StatusType

PK StatusID

Name

Figure 1: Entity Relationship Model

The entity Technology defines ElementType (type of transmission line), TypeCurrent (AC or
DC) and how much Voltage is used. The element type and current type are related, for example

Dr. Riccardo Tommasini Winter Semester 2021

November 2021 INSA Lyon 3

an sub-sea cable is always DC and an overhead line AC. Due to that we decided to build an
extra entity Type. We implemented it by using in the technology entity a TypeID (FK) to
connect it to the Type entity.

A similar implementation is used for the Status. The StatusID (FK) is used to identify the
current status. This was implemented, because there wasn’t a standardized way to define the
current status of an investment and multiple variants of one status existed. With that variant
we set a domain for the current status (commissioned, permitted, under consideration etc.),
here Name in StatusType.

3 Performed Queries

Before we started the project, we formulated several questions for the data.

1. Find all investments with a higher Voltage level of 400 which are built with
the

”
Elements Type“ of sub-sea cable

SELECT investment_id FROM technologies WHERE type_id = 5 AND voltage > 400

Relational Algebra: Πinvestment id(σtype id = 5ANDvoltage > 400(technologies))

We select all technologies, who have the type id equal to 5 (sub-sea cable) and the voltage
higher than 400, then we project them on the investment id. In this query, we use only
constraints.

There was another way, where we use INTERSECT.

SELECT investment_id FROM technologies WHERE type_id = 5
INTERSECT
SELECT investment_id FROM technologies WHERE voltage > 400

Relational Algebra: Πinvestment id(σtype id = 5(technologies))typeid = 5(technologies)
∩ Πinvestment id(σvoltage > 400(technologies))

In Figure 2 we see the two sub-queries who constrain the entity Technology. Then the
tables append, select all instances and copy them into one set. The hashed-intersect
statement discards all investment id ’s which do not exist in both select queries.

Figure 2: Graphical presentation of the first question

Dr. Riccardo Tommasini Winter Semester 2021

4 Project for DBM1 November 2021

2. List of Promoters and the number of associated projects

SELECT DISTINCT promoter, COUNT(A) AS occurrence
FROM
(SELECT split_part(promoter::text,’,’,1) as promoter FROM projects
UNION ALL
SELECT split_part(promoter::text,’,’,2) as promoter FROM projects
UNION ALL
SELECT split_part(promoter::text,’,’,3) as promoter FROM projects) A
WHERE promoter <> ’’
GROUP BY promoter ORDER BY occurrence DESC

Since some instances in the attribute promoter have up to three promoters, we split
them apart, and then combine them with the UNION ALL statement. Then we count the
occurrence of each promoter and show a distinct table.

Figure 3: Graphical presentation of the second question

The split is used on the table promoter. In the append statement they result in one
column, due to UNION ALL. With the GROUP BY promoter they get aggregated over each
promoter and return the number of the occurrence, done with COUNT(). Then we sort the
data for the biggest number, ORDER BY occurrence DESC. As a last step, we exclude the
empty cells.

3. Show already finished investments and projects

Since the data is from 2018, projects that end in 2021 are outdated. Here, we need to find
the finished investments and check if all investments inside a project are finished. Only
then, the project and associated investments can be removed. As a first step, we looked
at the investments and applied a constraint to show all investment id ’s before 2022, our
finished investments:

SELECT investment_id FROM statuses WHERE expected_year < 2022

Relational Algebra: Πinvestment id(σexpected year < 2022(statuses)

Then we counted the finished investments and put them next to their project id, done via
a join:

SELECT project_id, COUNT(E.investment_id) as finished_investments
FROM investments E JOIN statuses F ON E.investment_id = F.investment_id
WHERE expected_year < 2022
GROUP BY project_id ORDER BY project_id

Dr. Riccardo Tommasini Winter Semester 2021

November 2021 INSA Lyon 5

At this point we didn’t know how to proceed, since performing two counts within one
query struck me as complicated and an idea from Stack Overflow didn’t work in our case
[6].

Another way were two joins. We get all investment id ’s, who are finished at the end of
2021. Possible with a join over the attribute expected year from Status. Then we wanted
to check, if the number of associated investments from a project is equal to finished
investments.

SELECT DISTINCT P.project_id FROM investments AS I
JOIN projects AS P ON P.investments = SUM(case when ???? then 1 else 0 end)
JOIN statuses AS S ON S.investment_id=I.investment_id
WHERE S.expected_year < 2022
GROUP BY project_id

The query has four question-marks at the SUM(), because we didn’t find a key to compare
the entity project and investment. The project id does not help, since we work with the
investments.

Eventually we removed the attribute expected year from Status and inserted it in the
Investment entity (Appendix A). Due to that it was possible to perform the following
query:

SELECT a.project_id FROM projects a
WHERE a.investments = (SELECT COUNT(investment_id) FROM investments g
WHERE expected_year<2022 AND a.project_id = g.project_id) ORDER BY a.project_id

In Figure 4 we can see, that the query performs a sup-plan for the WHERE statement.
This is due to brackets we set around the (SELECT COUNT()...) statement. Then we
select the project id ’s, where the count of the finished investments is equal to the attribute
investments. The result set contains the finished projects.

Figure 4: Graphical presentation of the third question

4. Count the associated investments in each country

SELECT DISTINCT country,
COUNT(a) as occurrence FROM
(SELECT country1 as country FROM countries WHERE country1!=’NULL’
UNION ALL SELECT country2 as country FROM countries WHERE country2!=’NULL’
UNION ALL SELECT country3 as country FROM countries WHERE country3!=’NULL’) a
GROUP BY country

Here we counted the occurrence of investments in each country. First we exclude all cells
with the value ”NULL” and perform a UNION of all countries. This is seen in figure 5 and
results in one column. Then the occurrence for each country is calculated with COUNT()
and GROUP BY country.

Dr. Riccardo Tommasini Winter Semester 2021

6 Project for DBM1 November 2021

Figure 5: Graphical presentation of the third question

4 Transactions

In our database there are three important transactions:

• Insert a new project with associated investments It is important that each invest-
ment has an associated project. Due to that it makes sense to insert a new project first
and build a relation with the investments afterwards. When that is finished, the attribute
investments, number of investments, can be set. We could set here the atomicity prop-
erty, that all projects and all investments must be included, otherwise the transaction is
cancelled.

• Update the current status is not as critical as an insert or delete. It must be ensured
that there are not two users writing at the same time, so that the value of one cell changes
appropriately (consistency and isolation). To change the state we only need to change the
attribute, the rest stays.

• Delete a project and the associated investments when it is finished can be done
in the opposite way of an insert. First we delete all leaves and go back to the entity
investment, then the associated project can be deleted.

For example, we could update the status of an investment id in the entity Status:

UPDATE statuses SET status_id=1 WHERE investment_id = 4

Here we updated in the entity Status the status from ”in permitting” to ”commissioning”
from the investment id 4.

Dr. Riccardo Tommasini Winter Semester 2021

November 2021 INSA Lyon 7

References

[1] Ten year network development plan. Available at https://tyndp.entsoe.eu/maps-data/.

[2] Github package ”go-pg”. Available at https://github.com/go-pg/pg.

[3] Generics in go. Available at https://go.dev/blog/generics-proposal.

[4] Github repository. Available at https://github.com/lukasschirren/DBM_GoLang/tree/
master.

[5] Symbols and notations for er diagram. Available at https://www.lucidchart.com/pages/
ER-diagram-symbols-and-meaning.

[6] Multiple counts in one query. Available at https://stackoverflow.com/questions/
12789396/how-to-get-multiple-counts-with-one-sql-query.

Appendices

A New Entity-Relationship Model

Since we include the attribute expected year in the entity Investments we could include the
status name directly in the investment entity as status id and delete the whole entity Status.
Then we relate Investment and status type directly as seen in figure 6. This would simplify the
third SQL query and the ERM due to less entities.

One
-

Only One
-

Many
-

One or Many

Project

PK ProjectID

ProjectName

Promoter

Investments

Description

Investment

PK InvestmentID

Name

FK ProjectID

ExpectedYear

FromTo

PK InvestmentID

From City

To City

From TSO

To TSO

Country

PK InvestmentID

Country1

Country2

Country3

Technology

PK InvestmentID

FK TypeID

Voltage

Type

PK TypeID

TypeCurrent

ElementType

Status

PK InvestmentID

Name

Figure 6: New Entity Relationship Model

https://tyndp.entsoe.eu/maps-data/
https://github.com/go-pg/pg
https://go.dev/blog/generics-proposal
https://github.com/lukasschirren/DBM_GoLang/tree/master
https://github.com/lukasschirren/DBM_GoLang/tree/master
https://www.lucidchart.com/pages/ER-diagram-symbols-and-meaning
https://www.lucidchart.com/pages/ER-diagram-symbols-and-meaning
https://stackoverflow.com/questions/12789396/how-to-get-multiple-counts-with-one-sql-query
https://stackoverflow.com/questions/12789396/how-to-get-multiple-counts-with-one-sql-query

	Step by step
	Database Design
	Performed Queries
	Transactions
	Appendices
	New Entity-Relationship Model

