Foundation of Data Engineering

MCF Riccardo Tommasini
http:/rictcomm.me

riccardo.tommasini@insa-lyon.fr

INSTITUT NATIONAL
DES SCIENCES

INSA

APPLIQUEES

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1


http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

Recap

 The different roles of data engineer and scientist
 The intuition of "Data Pipeline" as a glue between roles

e The intuition of data quality and different levels of it

- However, the data pipeline has
been quite an abstract concept so far
- We still miss the elements that
iImplements the pipeline (Airflow)

- We did not discuss concrete
problems like durability and
distribution
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A Conceptual View of a Data Pipeline
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Data Modeling

It is the process of defining the structure
of the data for the purpose of
communicating*! or to develop an
information systems??.

1 between functional and technical people to show data needed for
business processes

12between components of the information system, how data is stored
and accessed.
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What is a data model?

e A data model represents the structure
and the integrity of the data elements of
a (single) applications 2

 Data models provide a framework for
data to be used within information
systems by giving specific definitions
and formats.

 The literature of data management is
rich of data models that aim at providing
increased expressiveness to the modeller
and capturing a richer set of semantics.
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Any Example?

y

Project Department
title ID (PK)
startDate > name
endDate >| parentDepartmentID (FK)

departmentID (FK)

T

leadPersonID (FK)

A

Project_Members

Department_Members

projectID (FK)
personiD (FK)

departmentID (FK)
personlD (FK)

| g

Person

Organization

ID (PK)
entitylD (FK)
dayOfBirth

_ ID (PK)
Entity entitylD (FK)
(1D (PK) < departmentID (FK)
name taxid
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Relational model dominance

Relational
model MongoDB,
Pre-relational sSQL Parallel DBMS Data Grid Apache Spark
1950 1970 1978 1989 1992 1995 2004 2009 2010

E. Codd’s Postgres Distributed MapReduce Neo4),

paper DBMS Apache Storm

Non-relational, Cloud computing, Big data era
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Data models are perhaps the most
important part of developing software.
They have such a profound effect not only
on how the software is written, but also
on how we think about the problem that
we are solving®.

— Martin Kleppmann

13 Designing Data-Intensive Applications
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Level of Data Modeling

Conceptual: The data model defines
WHAT the system contains.

Logical: Defines HOW the system should
be implemented regardless of the DBMS.

Physical: This Data Model describes HOW
the information system will be

iImplemented using a specific technology
14

1 physical
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Conceptual model is typically created by Business
stakeholders. The purpose is to organize, scope and define
business concepts and rules. Definitions are most important

this level.

Logical model is typically created by Data Architects. The
purpose is to developed technical map of rules and data
structures. Business rules, relationships, attribute become
visible. Conceptual definitions become metadata.

Physical model is typically created by DBA and developers.
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.
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A Closer Look®’

Levels of Data Modeling

1>slides & video by Donna Burbank

The variety of data available
today encourages the design and
development of dedicated data
models and query languages that
can improve both Bl as well as
the engineering process itself.
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We need help from Rudyard Kipling
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Conceptual

 Semantic Model (divergent)

e Describes an enterprise in terms of the language it uses (the
jargon).

e |t also tracks inconsistencies, i.e., semantic conflicts
e Architectural Model (convergent)

e More fundamental, abstract categories across enterprise

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Logical

Already bound to a technology, it typically refers already to
implementation details

e Relational

e Hierarchical

e Key-Value

e Object-Oriented
e Graph

Since it has a physical bias,
you might be tempted to
confuse this with the physical
model, but this is wrong.
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Physical

The physical level describes how data are Stored on a device.

e Data formats
e Distribution

e Indexes

e Data Partitions

e Data Replications

...an you are in the Big Data World
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Towards a Physical View

Before digging into the details of the physical view, we need to
unveil two premises

e A Big Data Premise (Workload)
e A Distributed System Premise: CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Big Data Premise

e Big data have an essential role in
today's pipeline design
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e As we said, this is not just about the %ﬁﬁ' oAS
el . peugYly XY
size! i % 3 As?eA
. ul!:‘ﬁ;ﬁ Eé c0¥g,
 Volume: demands scalability of : i'i:.:n’-:.:n‘i'ﬁﬁ A®AS,
storage i i e ve
i Data at Scale

e Variety: calls for flexibility of schema

* Velocity: requires continuous N A N /
processing

- Once again the big data challenges
impact the design of our pipelines

- The are all relevant at many levels,
but volume Is the one that caused
most of the changes

- we need to relax some aspects of
the data systems
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Traditional Data Modelling Workflow
Analyse Analyse - Analyse
e Known as Schema on Write
e Focus on the modelling a schema that
can accommodate all needs Write Data
e Bad impact on

- Extract Transform Load

- Some analyses may no
longer be performed because
the data were lost at writing
time,
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Schema on Read

\

Analyse Analyse [...] / Analyse
e |load data first, ask question later

e All data are kept, the minimal schema

need for an analysis is applied when

needed “P:;V:‘:" AP:Z:""P“N Appsg‘:mm;m
e New analyses can be introduced in any

point in time

Collect Data
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So, what'’s a logical architecture for a
data engineering pipeline?
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Let's Talk about Workloads

"OLAP ™3 OLTP

* Analytical
* Slow queries
* denorma lized

* Historical data

Information
Operations
-
3

BUSINESS DATA WAREHOUSE | BUSINESS PROCESS
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- OLTP systems are usually expected to be
highly available and to process
transactions with low latency, since they are
often critical to the operation of the business.
- OLAP queries are often written by
business analysts, and feed into reports that
help the management of a company make
better decisions (business intelligence).
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Online Transactional Processing

Because these applications are interactive, the access pattern
became known as online

Transactional means allowing clients to make low-latency reads
and writes—as opposed to batch processing jobs, which only run
periodically (for example, once per day).

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Refresh on ACID Properties

e ACID, which stands for Atomicity, Consistency, Isolation, and Durability'*
» Atomicity refers to something that cannot be broken down into smaller parts.
e |tis not about concurrency (which comes with the I)
e Consistency (overused term), that here relates to the data invariants (integrity would be a better term IMHO)
* [solation means that concurrently executing transactions are isolated from each other.
e Typically associated with serializability, but there weaker options.
» Durability means (fault-tolerant) persistency of the data, once the transaction is completed.

e A The terms was coined in 1983 by Theo Harder and Andreas Reuter °

1between functional and technical people to show data needed for business processes

1*Theo Harder and Andreas Reuter: “Principles of Transaction-Oriented Database Recovery,” ACM Computing
Surveys, volume 15, number 4, pages 287-317, December 1983. doi:10.1145/289.291
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Online Analytical Processing

An OLAP system allows a data analyst to look at different cross-

tabs on the same data by interactively selecting the attributes in
the cross-tab

Statistical analysis often requires grouping on multiple attributes.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Example

Consider this is a simplified version of the sales fact table joined
with the dimension tables, and many attributes removed (and some
renamed)

sales (itemname, color, clothessize, quantity)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 25
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item_name color clothes_size quantity
dress dark small 2
dress dark medium 6
pants pastel medium 0
pants pastel large 1
pants white small 3
pants white medium 0
shirt white medium 1
shirt white large 10
skirt dark small 2
skirt dark medium 5

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Cross-tabulation of sales by item name and color

dark pastel white total
skirt 8 35 10 53
dress 20 11 5 36
shirt 22 4 46 72
pants 23 42 25 90
total 73 92 102 267

columns header: color
rows header: item name

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Cheat Sheet of OLAP Operations?'’

Pivoting: changing the dimensions used in a cross-tab

e E.g. moving colors to column names

Slicing: creating a cross-tab for fixed values only
e E.g fixing color to white and size to small

 Sometimes called dicing, particularly when values for multiple
dimensions are fixed.

Rollup: moving from finer-granularity data to a coarser granularity
 E.g. aggregating away an attribute

* E.g. moving from aggregates by day to aggregates by month or year

Drill down: The opposite operation - that of moving from coarser granularity data to finer-granularity data

1”Database System Concepts Seventh Edition Avi Silberschatz Henry F. Korth, S. Sudarshan McGraw-Hill ISBN
9780078022159 link
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Summary OLTP vs OLAP?*

Property OLTP

OLAP

Main read pattern Small number of records per
query, fetched by key

Aggregate over large number
of records

Main write pattern Random-access, low-latency
writes from user input

Bulk import (ETL) or event
stream

Primarily used by End user/customer, via web
application

Internal analyst, for decision
support

What data represents Latest state of data (current
point in time)

History of events that
happened over time

Dataset size Gigabytes to terabytes

Terabytes to petabytes

13 Designing Data-Intensive Applications
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Data Lakes (Conceptual View)

DATA DATA LAKE ZONES CONSUMER SYSTEMS

TRANSIENT RAW TRUSTED REFINED %
stReaming  ZONE ZONE ZONE ZONE el
. Data Catalog
Ingest, Tag, :;:)[t)l)::tMsetad.at?a, Data quality E"‘r\'c::’ Daz & Data Prep Tools
& Catalog Data } :tt .be:m b7 & Validation w" kIfllla Data Visualization
FILE DATA MU iy External Connectors
RELATIONAL
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Physical Architecture of a Big Data Platform  ourccuco
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Distributed System Premise
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Data Partitioning

breaking a large database down into smaller ones

The main reason for wanting to partition data is
scalability®®

13 Designing Data-Intensive Applications
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For very large datasets, or very high query
throughput, that is not sufficient

- Different partitions can be placed on
different nodes in a shared-nothing cluster
- Queries that operate on a single partition
can be independently executed. Thus,
throughput can be scaled by adding more

nodes.
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What to know

e |f some partitions have more data or queries than others the
partitioning is skewed

e A partition with disproportionately high load is called a hot spot

e For reaching maximum scalability (linear) partitions should be
balanced

Let's consider some partitioning strategies, for simplicity we
consider Key,Value data.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 34
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Partitioning Strategies

 Round-robin randomly assigns new keys to the partitions.
e Ensures an even distribution of tuples across nodes;
 Range partitioning assigns a contiguous key range to each node.

 Not necessarily balanced, because data may not be evenly
distributed

 Hash partitioning uses a hash function to determine the target
partition. - If the hash function returns i, then the tuple is placed

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 35
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CAP Theorem (Brewer’s Theorem)

It is impossible for a distributed computer system to simultaneously provide all three of
the following guarantees:

e Consistency: all nodes see the same data at the same time

* Availability: Node failures do not prevent other survivors from continuing to operate
(a guarantee that every request receives a response whether it succeeded or failed)

* Partition tolerance: the system continues to operate despite arbitrary partitioning
due to network failures (e.g., message loss)

A distributed system can satisfy any two of these guarantees at the same time but not
all three.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 36
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CAP Systems

CA Guarantees to give a CP Guarantees responses
i correct response but only : are correct even if there are

: while network works fine network failures, but response
i (Centralised / Traditional) i may fail (Weak availability)

-
-
‘-I'...I..l.I..IIll...I-.I.I...Ill..-Il...l...ll.....l...-:. .‘ ..........................................................
*
.
.
.
.
.
.
.
..
.

(No intersection)

AP: Always provides a

“best-effort” response even in :
presence of network failures
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The network is not reliable

In a distributed system, *a network (of networks) * failures can, and
will, occur.

Since We cannot neglect Partition Tolerance the remaining option
is choosing between Consistency and Availability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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We cannot neglect Partition Tolerance

Not necessarily in a mutually exclusive manner:
e CP: A partitioned node returns

e the correct value

e a timeout error or an error, otherwise

e AP: A partiioned node returns the most recent version of the
data, which could be stale.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Implications of CAP Theorem

e change the transactionality gurantees
e redesign the data workflow ()

e reimagine the data processing systems (noSQL)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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The Advent of NoSQL

Google, Amazon, Facebook, and DARPA
all recognised that when you scale
systems large enough, you can never put
enough iron in one place to get the job
done (and you wouldn’t want to, to
prevent a single point of failure).

Once you accept that you have a
distributed system, you need to give up
consistency or availability, which the
fundamental transactionality of traditional
RDBMSs cannot abide.

--Cedric Beust

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

The name “NoSQL" is unfortunate, since it
doesn't actually refer to any particular
technology—it was originally intended simply
as a catchy Twitter hashtag for a meetup on
open source, distributed, non-relational
databases in 2009 Cf Pramod J. Sadalage
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN:
9/78-0-321-82662-6
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The Reasons Behind

 Queryability: need for specialised query operations that are not
well supported by the relational model

 Schemaless: desire for a more dynamic and expressive data
model than relational

e Flexibility: need to accomodate the "schema on read"
phylosophy

- Big Data: need for greater
scalability than relational databases
can easlly achieve in write

- Open Source: a widespread

preference for free and open source
software
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Object-Relational Mismatch

Most application development today is done in object-oriented
programming languages

An awkward translation layer is required between the objects in

the application code and the database model of tables, rows, and
columns

Object-relational mapping (ORM) frameworks like Hibernate try to
mild the mismatch, but they can’t completely hide the differences

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 43


http://rictomm.me

NoSQL Timeline
ultiVa
aaaaa
NoSQL Term is coined

by Carlo Strozzi

CCCCCCC

aaaaaaaaaaaaaaaa
MMMMMM

Project Voldemort
Redis

ooooooooooooooo

the idea of NOSQL actually
originates in the late 60s
together with the raise of the
raise of object-oriented
languages, but become
popular later.
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Shall we rethink the three-layered
modelling for Big Data?
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Designing NoSQL Data
Structures

e NoSQL data structures driven by application

design. Product

 Need to take into account necessary CRUD

operations
P Product_Nan

Product_Typ
Product_Use

e To embed or not to imbed. That is the
question!

e Rule of thumb is to imbed whenever

possible. Product_Nan

Product_Typ

 No modelling standards or CASE®*¢ tools! Product_Use

¢ computer aided software engineering
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Data Modeling for Big Data

e Conceptual Level remains:

e ER, UML diagram can still be used for no SQL as they output a model that
encompasses the whole company.

* Phsyical Level remains: NoSQL solutions often expose internals for obtaining flexibility,
e.g.,

o Key-value stores API
e Column stores

e |og structures

e [ogical level no longer make sense. Schema on read focuses on the query side. _
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NoSQL Familty

Document Database

Graph Databases

'.MarkLogiC‘

l |
‘: Couchbase

. mongoDB

. () Neo4j

InfiniteGraph

The Distributed Graph Database

Wide Column Stores

Key-Value Databases

—/'—WCassandra

AEROSPIKE

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

amazon

DynamoDB

sriak

aCCcurmuLo

s AP ACHE
& redis HBASE
Amazon SimpleDB

48


http://rictomm.me

Kinds of NoSQL (2/4)

NoSQL solutions fall into four major areas:

e Key-Value Store
e A key that refers to a payload (actual content / data)
 Examples: MemcacheDB, Azure Table Storage, Redis, HDFS
e Column Store
e Column data is saved together, as opposed to row data
o Super useful for data analytics

e Examples: Hadoop, Cassandra, Hypertable

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Kinds of NoSQL (4/4)

e Document / XML / Object Store
e Key (and possibly other indexes) point at a serialized object
e DB can operate against values in document
e Examples: MongoDB, CouchDB, RavenDB

 Graph Store

 Nodes are stored independently, and the relationship between nodes (edges)
are stored with data

e Examples: AllegroGraph, Neo4j

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Complexity Across Families

NoSQL

Key-Value
Stores

Size

Column
Families

Document
Databases

Graph
Databases

>

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Dependencies Across Families

A single key (column) value columns A single row

KVPairs r B N
J N\ /

KV Pairs to Flat Rows

—
colA | valuel colFoo | aval milk whlte )

colA | valuel | | long col name num
U
A [ [l Lo

Flat Rows to Composite Rows

WS

Composite Rows to Multi-

Multi-Level Embedded Level Embedded Documents

Documents (e 3 ) N
to Semantic Graph column A—p column B—p
P row A value value
> column B—¥»long
e bl e row B value
column C—» huge
- - i hS value
e L Family 1 L Family 2
- i
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a hatural evolutionary path
exists from simple key-value
stores to the highly
complicated graph databases,
as shown in the following
diagram:
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SQL vs NoSQL

SQL databases

NoSQL databases

Triggered the need of relational databases

Triggered by the storage needs of Web 2.0 companies
such as Facebook,Google and Amazon.com

Well structured data

Not necessarily well structured - e.g., pictures,
documents, web page description, video clips, etc.

Focus on data integrity

focuses on availability of data even in the presence of
multiple failures

Mostly Centralised

spread data across many storage systems with a high
degree of replication.

ACID properties should hold

ACID properties may not hold[*62]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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NoSQL & CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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The 0B ACID Model

 ACID, which stands for Atomicity, Consistency, Isolation, and Durability1-1(app:/
obsidian.md/index.html#fn-1-799ed3e7c985b657)

e Atomicity refers to something that cannot be broken down into smaller parts.
e [tis not about concurrency (which comes with the I)

e Consistency (overused term), that here relates to the data invariants (integrity would be a
better term IMHO)

e [|solation means that concurrently executing transactions are isolated from each other.
e Typically associated with serializability, but there weaker options.

e Durability means (fault-tolerant) persistency of the data, once the transaction is completed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 56

The terms was coined in 1983
by 1'heo Harder and Andreas
Reuter 6(app://obsidian.md/
iIndex.html#fn-6-/99%ed3e/c
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Rationale to Change

e It's ok to use stale data (Accounting systems do this all the time.
It’s called “closing out the books.”) ;

e It's ok to give approximate answers

e Use resource versioning -> say what the data really is about - no
more, no less

e thevalueofxis5attimeT

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 57
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The New BASE Model

BASE(Basically Available, Soft-State, Eventually Consistent)

e Basic Availability: fulfill request, even in partial consistency.
o Soft State: abandon the consistency requirements of the ACID model pretty much completely

 Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID
properties®’.

e purely aliveness guarantee (reads eventually return the requested value); but
e does not make safety guarantees, i.e.,

e an eventually consistent system can return any value before it converges

®7at some point in the future, data will converge to a consistent state;

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

58


http://rictomm.me

ACID vs. BASE trade-off

No general answer to whether your application needs an ACID versus BASE
consistency model.

Given BASE s loose consistency, developers need to be more knowledgeable and
rigorous about consistent data if they choose a BASE store for their application.

Planning around BASE limitations can sometimes be a major disadvantage when
compared to the simplicity of ACID transactions.

A fully ACID database is the perfect fit for use cases where data reliability and
consistency are essential.
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Extra Reads

* History of Data Models by llya Katsov

e Life beyond Distributed Transactions

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Refining the Initial View
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Logical architecture of a data engineering pipeline

POLITECNICO
MILANO 1863

<<anything>>
Bl #1.a Bl #1.b Bl #2.a Bl #2.b e.g., algorithm for process
optimization
ETLs #1.a ETLs #1.b ETLs #2.a ETLs #2.b ETLs #n.m [...]

Data View #1 Data View #2 [...] Data View #n
ETLs #1 ETLs #2 ETLs #n

Big Data Long Term Storage

Data format optimized for querying, but without an integrated schema (e.g., ORC, parquet)

Data Wrangling

Raw Big Data Landing Zone

Any data, any form, many schemata (if any) (e.g., csv, json, txt, ...)

Data Ingestion
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A Simplified view

'P 'F
Data Engineering Data Science

-—-s) )

Ingestion Staging Production
Data Data Data
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Our Physical View

M

Data Engineering

Ingestion
Data
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Our Physical View

M

Data Engineering

Ingestion
Data
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Our Physical View

M

Data Engineering

Ingestion

Data
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Our Physical View

M

Data Engineering

Ingestio%

Data
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MongoDB

0 MongoDB.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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History and Motivation

e An open source and document-oriented database.

e Data is stored in JSON-like documents.

 Designed with both scalability and developer agility.
e Dynamic schemas.

e Automatic data sharding

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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What MongoDB is :

e An In-Memory Document Databases
e Strong consistency (C)
e Tuneably available (A)

e Horizontal Scalable (P)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Consistency CA

CP

Partition
Tolerance

Availability
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What MongoDB is not

e Always Available™
* No Schemas
 No transactions
e No joins

e Max document size of 16MB??

’1Larger documents handled with GridFS

”2there will always be downtime when (i) the new leader is getting elected or (ii) the client driver disconnects from
the leader
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Use Cases

SEGA

. Capture game events, scaling to meet high-write workloads.

HSBC <>
o Financial Services: Risk Analytics & Reporting, Trade Repository

BOSCH
o manufacturing, automotive, retail, and energy

ThermoFisher . .
e scleNTIFIc fast-changing sensor data captured from multiple

devices and experiments
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When to consider MongoDB

e When you don't need high availability of data
e when you need fast and instant data recovery

e when do not want to sustain schema migration costs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Advantages

e Full featured indexes

e Sophisticated query language

e Easy mapping to object-oriented code

e Native language drivers in all popular languages
e Simple to set up and manage

e Operates at in-memory speed wherever possible
e Auto-sharding built in

e Dynamically add / remove capacity with no downtime
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In-Memory

Beller data local .
ty Caching Distributed Architecture

I

p

"N

Replication /HA

Relational MongoDB Horizontal Scaling

)
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Terminology: SQL vs MongoDB

SQL Terms/Concepts MongoDB Terms/Concepts
database database

table collection

row document

column field

index index

table joins (e.g. select queries)

embedded documents and linking

Primary keys

_id field is always the primary key

Aggregation (e.g. group by)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

aggregation pipeline
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Data Model: Structure of a
JSON-document:

The value of field:

- Native data types
- Arrays

- Other documents

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

"

n n

name: "sue”,
age: 26,

status: "A",

groups: [ "news”, "sports” ]

<«— fie
<+— fie
+—— fie
+—— fie

d:va
d:va
d:va

d:va

77

ue
ue
ue

ue


http://rictomm.me

Data Model: Collections of Documents

na
ag

gr

na

ag
st

gr

{

name: "al”,

age: 18,

status: "D",

groups: [ "politics”, "news" ]
)

Collection

Rule: Every document must have an _id.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Data Model: Embedded documents:

{

_1d: <ObjectIdil1>,
username: "123xyz",

contact: {
phone: "123-456-7890",

email: "xyz@example.com”

I

access: {
level: 5,

group: "dev”

)

p
p
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Embedded sub-

document

Embedded sub-

document
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Reference documents

user document

contact document

\

{

}

_id: <ObjectIdi1>,

username: "123xyzm\\\\

{
_1d: <ObjectId2>,

user_id: <ObjectIdl>,

/phone: "123-456-7890",

}

email: "xyz@example.com”

access document

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

{
_1d: <ObjectId3>,

user_id: <ObjectIdil>,
level: 5,
group: "dev"

3
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Storage: BSON Format

e Binary-encoded serialization of JSON-
like documents optimized for space and
speed

e BSON types are a superset of JSON
types”

e Zero or more key/value pairs are stored
as a single entity”?

e Large entities are prefixed with a length
field to facilitate scanning

?4 JSON does not have a date or a byte array type, for example

?3Each entry consists of a field name, a data type, and a value

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

BSON:
\x16'x00'x00'x00
\x02
name'\x00
x06'x00\x00'x00Devang\x00
\x00

// total document size
// 0x02 = type String
// field name

// field value
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+ —

Operations
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Create

Create a database

use database name

Create a collection

db.createCollection(name, options)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Insert

db.<collection_name>.insert({"name": "nguyen'". "age":

db.employee.insert({
name: "sally",
salary: 15000,
designation: "MIS",
teams: [ "cluster-management" ]

1)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

24,

"gender":

llma'Lell})

84


http://rictomm.me

Read

db.<collection name>.find().pretty()

db.employee #collection
find( {
salary: {$gt:18000}, #condition
{name:1} #projection
1)

.sort({salary:1}) #modifier

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Update

db.employee

.update(

{salary:{$gt:18000}},

{$set: {designation: "Manager'"}?},
{multi: true}

)

Multi-option allows multiple
document update
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Delete

db.employee.remove(
{salary:{$lt:10000}}, #Remove Criteria

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Aggregates

SQL-like aggregation functionality
Pipeline documents from a collection pass through an aggregation pipeline

Expressions produce output documents based on calculations performed on input
documents

Example:

db.parts.aggregate(
{$group : { id: type, totalquantity :
{ $sum: quantity}

11)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Save Drop

db.employee.save(  Drop a database
{ _id:0Objectld('string_1id'),
Ilnamell . Ilbenll , ° Drop it :
"age": 23,
'gender” - db.dropDatabase()
"male”

19 e Drop a collection:

db.<collection name>.drop()

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Mapping to SQL

SQL Statement MongoDB commands

SELECT * FROM table db.collection.find()

SELECT * FROM table WHERE artist = ‘Nirvana’ db.collection.find({Artist;”Nirvana”})

SELECT* FROM table ORDER BY Title db.collection.find().sort(Title:1)
DISTINCT distinct()

GROUP BY .group()

>= < $ste, $It

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Comparison Operators

Name __|Description

Seq
Sgt, Sgte

Slt, Slte
Sne

Sin
Snin
Sor
Sand
Snot
Snor

Sexists

source

Matches value that are equal to a specified value

Matches values that are greater than (or equalto a specified value
Matches values less than or ( equal to ) a specified value

Matches values that are not equal to a specified value

Matches any of the values specified in an array

Matches none of the values specified in an array

Joins query clauses with a logical OR returns all

Join query clauses with a loginal AND

Inverts the effect of a query expression

Join query clauses with a logical NOR

Matches documents that have a specified field

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Indexes

e B+ tree indexes
 Anindex is automatically created on the _id field (the primary key)

e Users can create other indexes to improve query performance or to enforce
Unique values for a particular field

e Supports single field index as well as Compound index
e Like SQL order of the fields in a compound index matters

e |fyou index a field that holds an array value, MongoDB creates separate
index entries for every element of the array
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Sparse Indexes

e Sparse_- property of an index ensures that the index only contain
entries for documents that have the indexed field. (so ignore
records that do not have the field defined)

e |[f an index is both unique and sparse - then the system will

reject records that have a duplicate key value but allow records
that do not have the indexed field defined

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 93


http://rictomm.me

Architecture

e Mongod - Database instance
e Mongos - Sharding processes:
e Like a database router processes all requests

e Decides how many and which mongod should
receive the query

e No local data

e Collects the results, and sends it back to the
client.

e Config Server
- Stores cluster chunk ranges and locations
- Can have only 1 or 3 (production must have 3)
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Mongod and Mongos

=
$ or X

App Server

e
=

App Server
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Client

e Mongo - an interactive shell ( a client)
e Fully functional JavaScript environment for use with a MongoDB

 You can have one mongos for the whole system no matter how
many mongods you have

e OR you can have one local mongos for every client if you wanted
to minimize network latency.
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Replication

For redundancy MongoDB provides asynchronous replication.

Only one database node is in charge of write operations at any
given time (called primary server/node).

Read operations may go to this same server for strong consistency
semantics or to any of its replica peers if eventual consistency is

sufficient.
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Master Slave Replication

Consists of two servers out of one which takes the role of a master handling write requests and replicating those operations to the
second server, the slave.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Replica Sets

Consists of groups of MongoDB nodes that work together to
provide automated failover.

Replica Sets are described as
an "an elaboration on the
existing master/slave
replication, adding automatic
fallover and automatic
recovery of member nodes”
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Partitioning
e called Sharding in MongoDB
o User defines shard key for partitioning
e Shard key defines range of data

e Key space is like points on a line

e Range is a segment of that line
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What is a Shard?

e Shard is a node of the cluster

e Shard can be a single mongod or a
replica set

e Default max chunk size: 64mb

e MongoDB automatically splits &
migrates chunks when max reached

Secondary
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Auto-sharding

e Minimal effort required
 Enable Sharding for a database
e Shard collection within database

e Decide Sharding Strategy
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MongoDB Sharding Strategies

e Ranged
e Hashed

e Tag-aware
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Range Sharding

» Splits shards based on sub-range of a key (or also multiple keys combined)
e Simple Shard Key: {deviceld}

e Composite Shard Key: {deviceld, timestamp}
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Hash Sharding

* MongoDB applies a MD5 hash on the key when a hash shard key is used:
e Hash Shard Key(deviceld) = MD5(deviceld)

e Ensures data is distributed randomly within the range of MD5 values
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Tag Sharding

Tag-aware sharding allows subset of shards to be tagged, and
assigned to a sub-range of the shard-key.

Example: Sharding User Data belong to users from 100 “regions”
Collection: Users, Shard Key: {uld, regionCode}

Tag based on macro regions

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 106


http://rictomm.me

Tag Sharding Example

Collection: Users, Shard Key: {uld, regionCode}

MaxKey,50

MaxKey, MaxKey

West MinKey, MinKey
East MinKey, 50
Shard1, Shard2, Shard3,
Tag=West Tag=West Tag=East
Gl Er— Bl W Ty e R
( [N | ( )
i Nl  Nami &
I 1| | I I I
I Secondary I I Secondary I I Secondary I
| 1| | I I I
: Secondary : : Secondary : : Secondary :
N =/ N / \ /
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Shard4,
Tag=East

Y i S

Secondary

Secondary

Assign Regions
1-50 to the West

Assign Regions
51-100 to the
East
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Which Sharding to use?

Usage Required Strategy
Scale Range or Hash
Geo-Locality Tag-aware
Hardware Optimization Tag-aware

Lower Recovery Times Range or Hash
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Routing and Balancing

 Queries routed to specific shards
e MongoDB balances cluster

e MongoDB migrates data to new nodes
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MongoDB Security

e SSL
e between client and server
e [ntra-cluster communication

e Authorization at the database level

e Read Only/Read+Write/Administrator
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