
Founda'on of Data Engineering
MCF Riccardo Tommasini

h"p://rictomm.me

riccardo.tommasini@insa-lyon.fr

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

Recap

• The different roles of data engineer and scien3st

• The intui3on of "Data Pipeline" as a glue between roles

• The intui3on of data quality and different levels of it

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 2

- However, the data pipeline has
been quite an abstract concept so far
- We still miss the elements that
implements the pipeline (Airflow)
- We did not discuss concrete
problems like durability and
distribution

http://rictomm.me

A Conceptual View of a Data Pipeline

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 3

obsidian://open?vault=dataeng&file=Data%20Pipeline.md
http://rictomm.me

Data Modeling

It is the process of defining the structure
of the data for the purpose of

communica4ng11 or to develop an
informa4on systems12.

12 between components of the informa3on system, how data is stored
and accessed.

11 between func+onal and technical people to show data needed for
business processes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 4

obsidian://open?vault=dataeng&file=Data%20Modeling.md
http://rictomm.me

What is a data model?

• A data model represents the structure
and the integrity of the data elements of
a (single) applica8ons 2

• Data models provide a framework for
data to be used within informa8on
systems by giving specific defini8ons
and formats.

• The literature of data management is
rich of data models that aim at providing
increased expressiveness to the modeller
and capturing a richer set of seman8cs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 5

x-bdsk://DBLP:journals/sigmod/SpynsMJ02
http://rictomm.me

Any Example?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 6

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 7

http://rictomm.me

Data models are perhaps the most
important part of developing so3ware.

They have such a profound effect not only
on how the so3ware is wri;en, but also
on how we think about the problem that

we are solving13.

— Mar&n Kleppmann

13 Designing Data-Intensive Applica3ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 8

https://dataintensive.net/
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 9

http://rictomm.me

Level of Data Modeling

Conceptual: The data model defines
WHAT the system contains.

Logical: Defines HOW the system should
be implemented regardless of the DBMS.

Physical: This Data Model describes HOW
the informa5on system will be
implemented using a specific technology
14.

14 physical

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 10

Conceptual model is typically created by Business
stakeholders. The purpose is to organize, scope and define
business concepts and rules. Definitions are most important
this level.
Logical model is typically created by Data Architects. The
purpose is to developed technical map of rules and data
structures. Business rules, relationships, attribute become
visible. Conceptual definitions become metadata.
Physical model is typically created by DBA and developers.
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.

https://www.databass.dev/
http://rictomm.me

A Closer Look15

15 slides & video by Donna Burbank

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 11

The variety of data available
today encourages the design and
development of dedicated data
models and query languages that
can improve both BI as well as
the engineering process itself.

https://www.slideshare.net/Dataversity/data-modeling-for-big-data
https://www.dataversity.net/ldm-webinar-data-modeling-big-data/
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 12

http://rictomm.me

Conceptual

• Seman'c Model (divergent)

• Describes an enterprise in terms of the language it uses (the
jargon).

• It also tracks inconsistencies, i.e., seman'c conflicts

• Architectural Model (convergent)

• More fundamental, abstract categories across enterprise

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 13

http://rictomm.me

Logical

Already bound to a technology, it typically refers already to
implementa7on details

• Rela&onal

• Hierarchical

• Key-Value

• Object-Oriented

• Graph
Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 14

Since it has a physical bias,
you might be tempted to
confuse this with the physical
model, but this is wrong.

http://rictomm.me

Physical

The physical level describes how data are Stored on a device.

• Data formats

• Distribu.on

• Indexes

• Data Par..ons

• Data Replica.ons

...an you are in the Big Data World

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 15

http://rictomm.me

Towards a Physical View

Before digging into the details of the physical view, we need to
unveil two premises

• A Big Data Premise (Workload)

• A Distributed System Premise: CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 16

CAP%20Theorem
http://rictomm.me

Big Data Premise

• Big data have an essen.al role in
today's pipeline design

• As we said, this is not just about the
size!

• Volume: demands scalability of
storage

• Variety: calls for flexibility of schema

• Velocity: requires con.nuous
processing

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 17

- Once again the big data challenges
impact the design of our pipelines
- The are all relevant at many levels,
but volume is the one that caused
most of the changes
- we need to relax some aspects of
the data systems

http://rictomm.me

Tradi&onal Data Modelling Workflow

• Known as Schema on Write

• Focus on the modelling a schema that
can accommodate all needs

• Bad impact on those analysis that were
not envisioned

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 18

- Extract Transform Load
 - Some analyses may no
longer be performed because
the data were lost at writing
time,

http://rictomm.me

Schema on Read

• Load data first, ask ques0on later

• All data are kept, the minimal schema
need for an analysis is applied when
needed

• New analyses can be introduced in any
point in 0me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 19

http://rictomm.me

So, what’s a logical architecture for a
data engineering pipeline?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 20

http://rictomm.me

Let's Talk about Workloads

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 21

- OLTP systems are usually expected to be
highly available and to process
transactions with low latency, since they are
often critical to the operation of the business.
- OLAP queries are often written by
business analysts, and feed into reports that
help the management of a company make
better decisions (business intelligence).

http://rictomm.me

Online Transac,onal Processing

Because these applica-ons are interac-ve, the access pa3ern
became known as online

Transac'onal means allowing clients to make low-latency reads
and writes—as opposed to batch processing jobs, which only run
periodically (for example, once per day).

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 22

http://rictomm.me

Refresh on ACID Proper0es

• ACID, which stands for Atomicity, Consistency, Isola8on, and Durability11

• Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

• Consistency (overused term), that here relates to the data invariants (integrity would be a beCer term IMHO)

• Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

• Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.

• ^ The terms was coined in 1983 by Theo Härder and Andreas Reuter 16

16 Theo Härder and Andreas Reuter: “Principles of Transac;on-Oriented Database Recovery,” ACM Compu;ng
Surveys, volume 15, number 4, pages 287–317, December 1983. doi:10.1145/289.291

11 between func+onal and technical people to show data needed for business processes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 23

http://rictomm.me

Online Analy*cal Processing

An OLAP system allows a data analyst to look at different cross-
tabs on the same data by interac9vely selec9ng the a<ributes in
the cross-tab

Stascal analysis o-en requires grouping on mul$ple a5ributes.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 24

http://rictomm.me

Example

Consider this is a simplified version of the sales fact table joined
with the dimension tables, and many a9ributes removed (and some
renamed)

sales (itemname, color, clothessize, quan/ty)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 25

http://rictomm.me

item_name color clothes_size quan1ty

dress dark small 2

dress dark medium 6

...

pants pastel medium 0

pants pastel large 1

pants white small 3

pants white medium 0

shirt white medium 1

...

shirt white large 10

skirt dark small 2

skirt dark medium 5

...

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 26

http://rictomm.me

Cross-tabula+on of sales by item name and color

dark pastel white total

skirt 8 35 10 53

dress 20 11 5 36

shirt 22 4 46 72

pants 23 42 25 90

total 73 92 102 267

columns header: color
rows header: item name

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 27

http://rictomm.me

Cheat Sheet of OLAP Opera0ons17

• Pivo%ng: changing the dimensions used in a cross-tab

• E.g. moving colors to column names

• Slicing: crea8ng a cross-tab for fixed values only

• E.g fixing color to white and size to small

• Some8mes called dicing, par8cularly when values for mul8ple
dimensions are fixed.

• Rollup: moving from finer-granularity data to a coarser granularity

• E.g. aggrega8ng away an aBribute

• E.g. moving from aggregates by day to aggregates by month or year

• Drill down: The opposite opera8on - that of moving from coarser granularity data to finer-granularity data

17 Database System Concepts Seventh Edi7on Avi Silberschatz Henry F. Korth, S. Sudarshan McGraw-Hill ISBN
9780078022159 link

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 28

https://www.db-book.com/db7/slides-dir/PDF-dir/ch11.pdf
http://rictomm.me

Summary OLTP vs OLAP13

Property OLTP OLAP

Main read pa*ern Small number of records per
query, fetched by key

Aggregate over large number
of records

Main write pa*ern Random-access, low-latency
writes from user input

Bulk import (ETL) or event
stream

Primarily used by End user/customer, via web
applicaHon

Internal analyst, for decision
support

What data represents Latest state of data (current
point in Hme)

History of events that
happened over Hme

Dataset size Gigabytes to terabytes Terabytes to petabytes

13 Designing Data-Intensive Applica3ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 29

https://dataintensive.net/
http://rictomm.me

Data Lakes (Conceptual View)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 30

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 31

http://rictomm.me

Distributed System Premise

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 32

http://rictomm.me

Data Par''oning

breaking a large database down into smaller ones

The main reason for wan.ng to par..on data is
scalability13

13 Designing Data-Intensive Applica3ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 33

For very large datasets, or very high query
throughput, that is not sufficient
- Different partitions can be placed on
different nodes in a shared-nothing cluster
- Queries that operate on a single partition
can be independently executed. Thus,
throughput can be scaled by adding more
nodes.

obsidian://open?vault=dataeng&file=Data%20Partitioning.md
https://dataintensive.net/
http://rictomm.me

What to know

• If some par,,ons have more data or queries than others the
par,,oning is skewed

• A par,,on with dispropor,onately high load is called a hot spot

• For reaching maximum scalability (linear) par,,ons should be
balanced

Let's consider some par00oning strategies, for simplicity we
consider Key,Value data.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 34

http://rictomm.me

Par$$oning Strategies

• Round-robin randomly assigns new keys to the par44ons.

• Ensures an even distribu4on of tuples across nodes;

• Range par//oning assigns a con4guous key range to each node.

• Not necessarily balanced, because data may not be evenly
distributed

• Hash par//oning uses a hash func4on to determine the target
par44on. - If the hash func4on returns i, then the tuple is placed

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 35

http://rictomm.me

CAP Theorem (Brewer’s Theorem)

It is impossible for a distributed computer system to simultaneously provide all three of
the following guarantees:

• Consistency: all nodes see the same data at the same .me

• Availability: Node failures do not prevent other survivors from con.nuing to operate
(a guarantee that every request receives a response whether it succeeded or failed)

• Par11on tolerance: the system con.nues to operate despite arbitrary par..oning
due to network failures (e.g., message loss)

A distributed system can sa0sfy any two of these guarantees at the same 0me but not
all three.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 36

obsidian://open?vault=dataeng&file=CAP%20Theorem.md
http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 37

http://rictomm.me

The network is not reliable

In a distributed system, *a network (of networks) * failures can, and
will, occur.

Since We cannot neglect Par//on Tolerance the remaining op/on
is choosing between Consistency and Availability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 38

http://rictomm.me

We cannot neglect Par--on Tolerance

Not necessarily in a mutually exclusive manner:

• CP: A par**oned node returns

• the correct value

• a *meout error or an error, otherwise

• AP: A par**oned node returns the most recent version of the
data, which could be stale.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 39

http://rictomm.me

Implica(ons of CAP Theorem

• change the transac,onality gurantees

• redesign the data workflow ()

• reimagine the data processing systems (noSQL)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 40

http://rictomm.me

The Advent of NoSQL

Google, Amazon, Facebook, and DARPA
all recognised that when you scale

systems large enough, you can never put
enough iron in one place to get the job

done (and you wouldn’t want to, to
prevent a single point of failure).

Once you accept that you have a
distributed system, you need to give up

consistency or availability, which the
fundamental transacFonality of tradiFonal

RDBMSs cannot abide.
 --Cedric Beust

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 41

The name “NoSQL” is unfortunate, since it
doesn’t actually refer to any particular
technology—it was originally intended simply
as a catchy Twitter hashtag for a meetup on
open source, distributed, non-relational
databases in 2009 Cf Pramod J. Sadalage
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN:
978-0-321-82662-6

obsidian://open?vault=dataeng&file=NoSQL.md
https://beust.com/weblog/2010/02/25/nosql-explained-correctly-finally/
http://rictomm.me

The Reasons Behind

• Queryability: need for specialised query opera3ons that are not
well supported by the rela3onal model

• Schemaless: desire for a more dynamic and expressive data
model than rela3onal

• Flexibility: need to accomodate the "schema on read"
phylosophy

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 42

- Big Data: need for greater
scalability than relational databases
can easily achieve in write
 - Open Source: a widespread
preference for free and open source
software

http://rictomm.me

Object-Rela+onal Mismatch

Most applica+on development today is done in object-oriented
programming languages

An awkward transla+on layer is required between the objects in
the applica4on code and the database model of tables, rows, and
columns

Object-rela+onal mapping (ORM) frameworks like Hibernate try to
mild the mismatch, but they can’t completely hide the differences

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 43

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 44

the idea of NOSQL actually
originates in the late 60s
together with the raise of the
raise of object-oriented
languages, but become
popular later.

http://rictomm.me

Shall we rethink the three-layered
modelling for Big Data?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 45

http://rictomm.me

Designing NoSQL Data
Structures

• NoSQL data structures driven by applica7on
design.

• Need to take into account necessary CRUD
opera7ons

• To embed or not to imbed. That is the
ques7on!

• Rule of thumb is to imbed whenever
possible.

• No modelling standards or CASEcase tools!

case computer aided so.ware engineering

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 46

http://rictomm.me

Data Modeling for Big Data

• Conceptual Level remains:

• ER, UML diagram can s4ll be used for no SQL as they output a model that
encompasses the whole company.

• Phsyical Level remains: NoSQL solu4ons oCen expose internals for obtaining flexibility,
e.g.,

• Key-value stores API

• Column stores

• Log structures

• Logical level no longer make sense. Schema on read focuses on the query side._

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 47

http://rictomm.me

NoSQL Familty

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 48

http://rictomm.me

Kinds of NoSQL (2/4)

NoSQL solu*ons fall into four major areas:

• Key-Value Store

• A key that refers to a payload (actual content / data)

• Examples: MemcacheDB, Azure Table Storage, Redis, HDFS

• Column Store

• Column data is saved together, as opposed to row data

• Super useful for data analyKcs

• Examples: Hadoop, Cassandra, Hypertable

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 49

http://rictomm.me

Kinds of NoSQL (4/4)

• Document / XML / Object Store

• Key (and possibly other indexes) point at a serialized object

• DB can operate against values in document

• Examples: MongoDB, CouchDB, RavenDB

• Graph Store

• Nodes are stored independently, and the relaEonship between nodes (edges)
are stored with data

• Examples: AllegroGraph, Neo4j

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 50

http://rictomm.me

Complexity Across Families

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 51

http://rictomm.me

Dependencies Across Families

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 52

a natural evolutionary path
exists from simple key-value
stores to the highly
complicated graph databases,
as shown in the following
diagram:

http://rictomm.me

SQL vs NoSQL

SQL databases NoSQL databases

Triggered the need of rela/onal databases Triggered by the storage needs of Web 2.0 companies
such as Facebook,Google and Amazon.com

Well structured data Not necessarily well structured – e.g., pictures,
documents, web page descrip/on, video clips, etc.

Focus on data integrity focuses on availability of data even in the presence of
mul/ple failures

Mostly Centralised spread data across many storage systems with a high
degree of replica/on.

ACID proper/es should hold ACID proper/es may not hold[^62]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 53

http://rictomm.me

NoSQL & CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 54

http://rictomm.me

img 55

https://blog.nahurst.com/visual-guide-to-nosql-systems

The OLD ACID Model

• ACID, which stands for Atomicity, Consistency, Isola8on, and Durability1-1(app://
obsidian.md/index.html#fn-1-799ed3e7c985b657)

• Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

• Consistency (overused term), that here relates to the data invariants (integrity would be a
beNer term IMHO)

• Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

• Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 56

The terms was coined in 1983
by Theo Härder and Andreas
Reuter 6(app://obsidian.md/
index.html#fn-6-799ed3e7c
985b657)

obsidian://open?vault=dataeng&file=1-1.md
http://rictomm.me

Ra#onale to Change

• It’s ok to use stale data (Accoun2ng systems do this all the 2me.
It’s called “closing out the books.”) ;

• It’s ok to give approximate answers

• Use resource versioning -> say what the data really is about – no
more, no less

• the value of x is 5 at 2me T

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 57

http://rictomm.me

The New BASE Model

BASE(Basically Available, So2-State, Eventually Consistent)

• Basic Availability: fulfill request, even in par3al consistency.

• So/ State: abandon the consistency requirements of the ACID model pre@y much completely

• Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID
proper3es67.

• purely aliveness guarantee (reads eventually return the requested value); but

• does not make safety guarantees, i.e.,

• an eventually consistent system can return any value before it converges

67 at some point in the future, data will converge to a consistent state;

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 58

http://rictomm.me

ACID vs. BASE trade-off

No general answer to whether your applica/on needs an ACID versus BASE
consistency model.

Given BASE ’s loose consistency, developers need to be more knowledgeable and
rigorous about consistent data if they choose a BASE store for their applica?on.

Planning around BASE limita.ons can some.mes be a major disadvantage when
compared to the simplicity of ACID transac.ons.

A fully ACID database is the perfect fit for use cases where data reliability and
consistency are essen6al.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 59

http://rictomm.me

Extra Reads

• History of Data Models by Ilya Katsov

• Life beyond Distributed Transac:ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 60

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://rictomm.me

Refining the Ini+al View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 61

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 62

http://rictomm.me

A Simplified view

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 63

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 64

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 65

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 66

http://rictomm.me

Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 67

http://rictomm.me

MongoDB

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 68

http://rictomm.me

History and Mo-va-on

• An open source and document-oriented database.

• Data is stored in JSON-like documents.

• Designed with both scalability and developer agility.

• Dynamic schemas.

• Automa@c data sharding

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 69

http://rictomm.me

What MongoDB is :

• An In-Memory Document Databases

• Strong consistency (C)

• Tuneably available (A)

• Horizontal Scalable (P)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 70

obsidian://open?vault=dataeng&file=Document%20Databases.md
http://rictomm.me

What MongoDB is not

• Always Available91

• No Schemas

• No transac8ons

• No joins

• Max document size of 16MB92

92 there will always be down2me when (i) the new leader is ge7ng elected or (ii) the client driver disconnects from
the leader

91 Larger documents handled with GridFS

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 71

http://rictomm.me

Use Cases

• Capture game events, scaling to meet high-write workloads.

• Financial Services: Risk Analy@cs & Repor@ng, Trade Repository

• manufacturing, automo@ve, retail, and energy

• fast-changing sensor data captured from mul@ple
devices and experiments

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 72

http://rictomm.me

When to consider MongoDB

• When you don't need high availability of data

• when you need fast and instant data recovery

• when do not want to sustain schema migra9on costs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 73

http://rictomm.me

Advantages

• Full featured indexes

• Sophis4cated query language

• Easy mapping to object-oriented code

• Na4ve language drivers in all popular languages

• Simple to set up and manage

• Operates at in-memory speed wherever possible

• Auto-sharding built in

• Dynamically add / remove capacity with no down4me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 74

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 75

http://rictomm.me

Terminology: SQL vs MongoDB

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collec*on

row document

column field

index index

table joins (e.g. select queries) embedded documents and linking

Primary keys _id field is always the primary key

Aggrega*on (e.g. group by) aggrega*on pipeline

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 76

http://rictomm.me

Data Model: Structure of a
JSON-document:

The value of field:
 - Na0ve data types
 - Arrays
 - Other documents

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 77

http://rictomm.me

Data Model: Collec-ons of Documents

Rule: Every document must have an _id.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 78

http://rictomm.me

Data Model: Embedded documents:

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 79

http://rictomm.me

Reference documents

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 80

http://rictomm.me

Storage: BSON Format

• Binary-encoded serializa1on of JSON-
like documents op1mized for space and
speed

• BSON types are a superset of JSON
types94

• Zero or more key/value pairs are stored
as a single en1ty93

• Large en11es are prefixed with a length
field to facilitate scanning

93 Each entry consists of a field name, a data type, and a value

94 JSON does not have a date or a byte array type, for example

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 81

http://rictomm.me

Opera&ons

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 82

http://rictomm.me

Create

Create a database

use database_name

Create a collec*on

db.createCollection(name, options)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 83

http://rictomm.me

Insert

db.<collection_name>.insert({"name": "nguyen". "age": 24, "gender": "male"})

db.employee.insert({
 name: "sally",
 salary: 15000,
 designation: "MTS",
 teams: ["cluster-management"]
})`

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 84

http://rictomm.me

Read

 db.<collection_name>.find().pretty()

db.employee #collection
 .find({
 salary: {$gt:18000}, #condition
 {name:1} #projection
 })
.sort({salary:1}) #modifier

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 85

http://rictomm.me

Update

db.employee #collection
.update(
 {salary:{$gt:18000}}, #Update Criteria
 {$set: {designation: "Manager"}}, #Update Action
 {multi: true} #Update Option
)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 86

Multi-option allows multiple
document update

http://rictomm.me

Delete

db.employee.remove(
 {salary:{$lt:10000}}, #Remove Criteria
)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 87

http://rictomm.me

Aggregates

SQL-like aggrega-on func-onality

Pipeline documents from a collec2on pass through an aggrega2on pipeline

Expressions produce output documents based on calcula3ons performed on input
documents

Example:

db.parts.aggregate(
 {$group : {_id: type, totalquantity :
 { $sum: quantity}
}})

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 88

http://rictomm.me

Save

db.employee.save(
 { _id:ObjectId('string_id'),
 "name": "ben",
 "age": 23,
 "gender":
 "male"
})

Drop

• Drop a database

• Drop it:
db.dropDatabase()

• Drop a collec/on:

db.<collection_name>.drop()

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 89

http://rictomm.me

Mapping to SQL

SQL Statement MongoDB commands

SELECT * FROM table db.collec5on.find()

SELECT * FROM table WHERE ar5st = ‘Nirvana’ db.collec5on.find({Ar5st:”Nirvana”})

SELECT* FROM table ORDER BY Title db.collec5on.find().sort(Title:1)

DISTINCT .dis5nct()

GROUP BY .group()

>=, < $gte, $lt

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 90

http://rictomm.me

Comparison Operators

source

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 91

https://docs.mongodb.org/manual/reference/operator/query
http://rictomm.me

Indexes

• B+ tree indexes

• An index is automa2cally created on the _id field (the primary key)

• Users can create other indexes to improve query performance or to enforce
Unique values for a par2cular field

• Supports single field index as well as Compound index

• Like SQL order of the fields in a compound index maGers

• If you index a field that holds an array value, MongoDB creates separate
index entries for every element of the array

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 92

http://rictomm.me

Sparse Indexes

• Sparse_- property of an index ensures that the index only contain
entries for documents that have the indexed field. (so ignore
records that do not have the field defined)

• If an index is both unique and sparse – then the system will
reject records that have a duplicate key value but allow records
that do not have the indexed field defined

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 93

http://rictomm.me

Architecture

• Mongod – Database instance

• Mongos - Sharding processes:

• Like a database router processes all requests

• Decides how many and which mongod should
receive the query

• No local data

• Collects the results, and sends it back to the
client.

• Config Server
– Stores cluster chunk ranges and locaEons
– Can have only 1 or 3 (producEon must have 3)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 94

http://rictomm.me

Mongod and Mongos

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 95

http://rictomm.me

Client

• Mongo – an interac.ve shell (a client)

• Fully func.onal JavaScript environment for use with a MongoDB

• You can have one mongos for the whole system no maAer how
many mongods you have

• OR you can have one local mongos for every client if you wanted
to minimize network latency.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 96

http://rictomm.me

Replica(on

For redundancy MongoDB provides asynchronous replica6on.

Only one database node is in charge of write opera5ons at any
given 5me (called primary server/node).

Read opera)ons may go to this same server for strong consistency
seman)cs or to any of its replica peers if eventual consistency is
sufficient.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 97

http://rictomm.me

Master Slave Replica/on

Consists of two servers out of one which takes the role of a master handling write requests and replica8ng those opera8ons to the
second server, the slave.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 98

http://rictomm.me

Replica Sets

Consists of groups of MongoDB nodes that work together to
provide automated failover.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 99

Replica Sets are described as
an "an elaboration on the
existing master/slave
replication, adding automatic
failover and automatic
recovery of member nodes"

http://rictomm.me

Par$$oning

• called Sharding in MongoDB

• User defines shard key for par99oning

• Shard key defines range of data

• Key space is like points on a line

• Range is a segment of that line

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 100

http://rictomm.me

What is a Shard?

• Shard is a node of the cluster

• Shard can be a single mongod or a
replica set

• Default max chunk size: 64mb

• MongoDB automa?cally splits &
migrates chunks when max reached

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 101

http://rictomm.me

Auto-sharding

• Minimal effort required

• Enable Sharding for a database

• Shard collec9on within database

• Decide Sharding Strategy

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 102

http://rictomm.me

MongoDB Sharding Strategies

• Ranged

• Hashed

• Tag-aware

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 103

http://rictomm.me

Range Sharding

• Splits shards based on sub-range of a key (or also mul9ple keys combined)

• Simple Shard Key: {deviceId}

• Composite Shard Key: {deviceId, 9mestamp}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 104

http://rictomm.me

Hash Sharding

• MongoDB applies a MD5 hash on the key when a hash shard key is used:

• Hash Shard Key(deviceId) = MD5(deviceId)

• Ensures data is distributed randomly within the range of MD5 values

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 105

http://rictomm.me

Tag Sharding

Tag-aware sharding allows subset of shards to be tagged, and
assigned to a sub-range of the shard-key.

Example: Sharding User Data belong to users from 100 “regions”

Collec&on: Users, Shard Key: {uId, regionCode}

Tag based on macro regions

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 106

http://rictomm.me

Tag Sharding Example

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 107

http://rictomm.me

Which Sharding to use?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 108

http://rictomm.me

Rou$ng and Balancing

• Queries routed to specific shards

• MongoDB balances cluster

• MongoDB migrates data to new nodes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 109

http://rictomm.me

MongoDB Security

• SSL

• between client and server

• Intra-cluster communica7on

• Authoriza7on at the database level

• Read Only/Read+Write/Administrator

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 110

http://rictomm.me

References

• Mongodb.com

• No SQL Dis3lled by P. Sadalage and M.
Fowler

• MongoDB Applied Design Pa?ers by R.
Copeland

• The Defini3ve Guide to MongoDB by
Plugge, Membry and Hawkins

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 111

http://www.mongodb.com/nosql-explained
http://rictomm.me

