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Recap

• The different roles of data engineer and scien3st

• The intui3on of "Data Pipeline" as a glue between roles

• The intui3on of data quality and different levels of it
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- However, the data pipeline has 
been quite an abstract concept so far
- We still miss the elements that 
implements the pipeline (Airflow)
- We did not discuss concrete 
problems like durability and 
distribution
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A Conceptual View of a Data Pipeline
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Data Modeling

It is the process of defining the structure 
of the data for the purpose of 

communica4ng11 or to develop an 
informa4on systems12.

12 between components of the informa3on system, how data is stored 
and accessed.

11 between func+onal and technical people to show data needed for 
business processes
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What is a data model?

• A data model represents the structure 
and the integrity of the data elements of 
a (single) applica8ons 2 

• Data models provide a framework for 
data to be used within informa8on 
systems by giving specific defini8ons 
and formats.

• The literature of data management is 
rich of data models that aim at providing 
increased expressiveness to the modeller 
and capturing a richer set of seman8cs.
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Any Example?
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Data models are perhaps the most 
important part of developing so3ware. 

They have such a profound effect not only 
on how the so3ware is wri;en, but also 
on how we think about the problem that 

we are solving13.

— Mar&n Kleppmann

13 Designing Data-Intensive Applica3ons
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Level of Data Modeling

Conceptual: The data model defines 
WHAT the system contains.

Logical: Defines HOW the system should 
be implemented regardless of the DBMS. 

Physical: This Data Model describes HOW 
the informa5on system will be 
implemented using a specific technology 
14.

14 physical
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Conceptual model is typically created by Business 
stakeholders. The purpose is to organize, scope and define 
business concepts and rules. Definitions are most important 
this level.
Logical model is typically created by Data Architects. The 
purpose is to developed technical map of rules and data 
structures. Business rules, relationships, attribute become 
visible. Conceptual definitions become metadata.
Physical model is typically created by DBA and developers. 
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.

https://www.databass.dev/
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A Closer Look15

15 slides & video by Donna Burbank
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The variety of data available 
today encourages the design and 
development of dedicated data 
models and query languages that 
can improve both BI as well as 
the engineering process itself.

https://www.slideshare.net/Dataversity/data-modeling-for-big-data
https://www.dataversity.net/ldm-webinar-data-modeling-big-data/
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Conceptual

• Seman'c Model (divergent)

• Describes an enterprise in terms of the language it uses (the 
jargon).

• It also tracks inconsistencies, i.e., seman'c conflicts 

• Architectural Model (convergent)

• More fundamental, abstract categories across enterprise 
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Logical

Already bound to a technology, it typically refers already to 
implementa7on details

• Rela&onal

• Hierarchical

• Key-Value

• Object-Oriented

• Graph
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Since it has a physical bias, 
you might be tempted to 
confuse this with the physical 
model, but this is wrong. 
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Physical

The physical level describes how data are Stored on a device.

• Data formats

• Distribu.on

• Indexes

• Data Par..ons

• Data Replica.ons

...an you are in the Big Data World
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Towards a Physical View

Before digging into the details of the physical view, we need to 
unveil two premises

• A Big Data Premise (Workload)

• A Distributed System Premise: CAP Theorem
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Big Data Premise

• Big data have an essen.al role in 
today's pipeline design 

• As we said, this is not just about the 
size!

• Volume: demands scalability of 
storage

• Variety: calls for flexibility of schema

• Velocity: requires con.nuous 
processing
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- Once again the big data challenges 
impact the design of our pipelines
- The are all relevant at many levels, 
but volume is the one that caused 
most of the changes
- we need to relax some aspects of 
the data systems 
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Tradi&onal Data Modelling Workflow

• Known as Schema on Write

• Focus on the modelling a schema that 
can accommodate all needs

• Bad impact on those analysis that were 
not envisioned
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- Extract Transform Load
 - Some analyses may no 
longer be performed because 
the data were lost at writing 
time,
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Schema on Read

• Load data first, ask ques0on later

• All data are kept, the minimal schema 
need for an analysis is applied when 
needed

• New analyses can be introduced in any 
point in 0me
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So, what’s a logical architecture for a 
data engineering pipeline?
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Let's Talk about Workloads
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- OLTP systems are usually expected to be 
highly available and to process 
transactions with low latency, since they are 
often critical to the operation of the business.
- OLAP queries are often written by 
business analysts, and feed into reports that 
help the management of a company make 
better decisions (business intelligence).
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Online Transac,onal Processing

Because these applica-ons are interac-ve, the access pa3ern 
became known as online

Transac'onal means allowing clients to make low-latency reads 
and writes—as opposed to batch processing jobs, which only run 
periodically (for example, once per day).
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Refresh on ACID Proper0es

• ACID, which stands for Atomicity, Consistency, Isola8on, and Durability11

• Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

• Consistency (overused term), that here relates to the data invariants (integrity would be a beCer term IMHO)

• Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

• Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.

• ^ The terms was coined in 1983 by Theo Härder and Andreas Reuter 16

16 Theo Härder and Andreas Reuter: “Principles of Transac;on-Oriented Database Recovery,” ACM Compu;ng 
Surveys, volume 15, number 4, pages 287–317, December 1983. doi:10.1145/289.291

11 between func+onal and technical people to show data needed for business processes
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Online Analy*cal Processing

An OLAP system allows a data analyst to look at different cross-
tabs on the same data by interac9vely selec9ng the a<ributes in 
the cross-tab

Sta$s$cal analysis o-en requires grouping on mul$ple a5ributes.
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Example

Consider this is a simplified version of the sales fact table joined 
with the dimension tables, and many a9ributes removed (and some 
renamed)

sales (itemname, color, clothessize, quan/ty) 
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item_name color clothes_size quan1ty

dress dark small 2

dress dark medium 6

... ... ... ...

pants pastel medium 0

pants pastel large 1

pants white small 3

pants white medium 0

shirt white medium 1

... ... ... ...

shirt white large 10

skirt dark small 2

skirt dark medium 5

... ... ... ...
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Cross-tabula+on of sales by item name and color

dark pastel white total

skirt 8 35 10 53

dress 20 11 5 36

shirt 22 4 46 72

pants 23 42 25 90

total 73 92 102 267

columns header: color
rows header: item name
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Cheat Sheet of OLAP Opera0ons17

• Pivo%ng: changing the dimensions used in a cross-tab

• E.g. moving colors to column names

• Slicing: crea8ng a cross-tab for fixed values only

• E.g fixing color to white and size to small

• Some8mes called dicing, par8cularly when values for mul8ple
dimensions are fixed.

• Rollup: moving from finer-granularity data to a coarser granularity

• E.g. aggrega8ng away an aBribute

• E.g. moving from aggregates by day to aggregates by month or year

• Drill down: The opposite opera8on - that of moving from coarser granularity data to finer-granularity data

17 Database System Concepts Seventh Edi7on Avi Silberschatz Henry F. Korth, S. Sudarshan McGraw-Hill ISBN 
9780078022159 link
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Summary OLTP vs OLAP13

Property OLTP OLAP

Main read pa*ern Small number of records per 
query, fetched by key

Aggregate over large number 
of records

Main write pa*ern Random-access, low-latency 
writes from user input

Bulk import (ETL) or event 
stream

Primarily used by End user/customer, via web 
applicaHon

Internal analyst, for decision 
support

What data represents Latest state of data (current 
point in Hme)

History of events that 
happened over Hme

Dataset size Gigabytes to terabytes Terabytes to petabytes

13 Designing Data-Intensive Applica3ons
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Data Lakes (Conceptual View)
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Distributed System Premise
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Data Par''oning

breaking a large database down into smaller ones

The main reason for wan.ng to par..on data is 
scalability13

13 Designing Data-Intensive Applica3ons
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For very large datasets, or very high query 
throughput, that is not sufficient
- Different partitions can be placed on 
different nodes in a shared-nothing cluster
- Queries that operate on a single partition 
can be independently executed. Thus, 
throughput can be scaled by adding more 
nodes.

obsidian://open?vault=dataeng&file=Data%20Partitioning.md
https://dataintensive.net/
http://rictomm.me


What to know

• If some par,,ons have more data or queries than others the 
par,,oning is skewed

• A par,,on with dispropor,onately high load is called a hot spot

• For reaching maximum scalability (linear) par,,ons should be 
balanced

Let's consider some par00oning strategies, for simplicity we 
consider Key,Value data.
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Par$$oning Strategies

• Round-robin randomly assigns new keys to the par44ons. 

• Ensures an even distribu4on of tuples across nodes; 

• Range par//oning assigns a con4guous key range to each node. 

• Not necessarily balanced, because data may not be evenly 
distributed

• Hash par//oning uses a hash func4on to determine the target 
par44on. - If the hash func4on returns i, then the tuple is placed
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CAP Theorem (Brewer’s Theorem)

It is impossible for a distributed computer system to simultaneously provide all three of 
the following guarantees:

• Consistency: all nodes see the same data at the same .me

• Availability: Node failures do not prevent other survivors from con.nuing to operate 
(a guarantee that every request receives a response whether it succeeded or failed)

• Par11on tolerance: the system con.nues to operate despite arbitrary par..oning 
due to network failures (e.g., message loss)

A distributed system can sa0sfy any two of these guarantees at the same 0me but not 
all three.
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The network is not reliable

In a distributed system, *a network (of networks) * failures can, and 
will, occur.

Since We cannot neglect Par//on Tolerance the remaining op/on 
is choosing between Consistency and Availability. 
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We cannot neglect Par--on Tolerance

Not necessarily in a mutually exclusive manner:

• CP: A par**oned node returns

• the correct value

• a *meout error or an error, otherwise

• AP: A par**oned node returns the most recent version of the 
data, which could be stale.
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Implica(ons of CAP Theorem

• change the transac,onality gurantees

• redesign the data workflow ()

• reimagine the data processing systems (noSQL)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 40

http://rictomm.me


The Advent of NoSQL

Google, Amazon, Facebook, and DARPA 
all recognised that when you scale 

systems large enough, you can never put 
enough iron in one place to get the job 

done (and you wouldn’t want to, to 
prevent a single point of failure). 

Once you accept that you have a 
distributed system, you need to give up 

consistency or availability, which the 
fundamental transacFonality of tradiFonal 

RDBMSs cannot abide.
 --Cedric Beust
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The name “NoSQL” is unfortunate, since it 
doesn’t actually refer to any particular 
technology—it was originally intended simply 
as a catchy Twitter hashtag for a meetup on 
open source, distributed, non-relational 
databases in 2009 Cf Pramod J. Sadalage 
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN: 
978-0-321-82662-6

obsidian://open?vault=dataeng&file=NoSQL.md
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The Reasons Behind

• Queryability: need for specialised query opera3ons that are not 
well supported by the rela3onal model

• Schemaless: desire for a more dynamic and expressive data 
model than rela3onal

• Flexibility: need to accomodate the "schema on read" 
phylosophy
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- Big Data: need for greater 
scalability than relational databases 
can easily achieve in write
 - Open Source: a widespread 
preference for free and open source 
software 
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Object-Rela+onal Mismatch

Most applica+on development today is done in object-oriented 
programming languages

An awkward transla+on layer is required between the objects in 
the applica4on code and the database model of tables, rows, and 
columns

Object-rela+onal mapping (ORM) frameworks like Hibernate try to 
mild the mismatch, but they can’t completely hide the differences
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the idea of NOSQL actually 
originates in the late 60s 
together with the raise of the 
raise of object-oriented 
languages, but become 
popular later.
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Shall we rethink the three-layered 
modelling for Big Data?
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Designing NoSQL Data 
Structures

• NoSQL data structures driven by applica7on 
design.

• Need to take into account necessary CRUD 
opera7ons

• To embed or not to imbed. That is the 
ques7on!

• Rule of thumb is to imbed whenever 
possible.

• No modelling standards or CASEcase tools!

case computer aided so.ware engineering
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Data Modeling for Big Data

• Conceptual Level remains:

• ER, UML diagram can s4ll be used for no SQL as they output a model that 
encompasses the whole company.

• Phsyical Level remains: NoSQL solu4ons oCen expose internals for obtaining flexibility, 
e.g., 

• Key-value stores API

• Column stores

• Log structures

• Logical level no longer make sense. Schema on read focuses on the query side._
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NoSQL Familty
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Kinds of NoSQL (2/4)

NoSQL solu*ons fall into four major areas:

• Key-Value Store

• A key that refers to a payload (actual content / data)

• Examples: MemcacheDB, Azure Table Storage, Redis, HDFS

• Column Store 

• Column data is saved together, as opposed to row data

• Super useful for data analyKcs

• Examples: Hadoop, Cassandra, Hypertable
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Kinds of NoSQL (4/4)

• Document / XML / Object Store

• Key (and possibly other indexes) point at a serialized object

• DB can operate against values in document

• Examples: MongoDB, CouchDB, RavenDB

• Graph Store

• Nodes are stored independently, and the relaEonship between nodes (edges) 
are stored with data

• Examples: AllegroGraph, Neo4j
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Complexity Across Families
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Dependencies Across Families
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a natural evolutionary path 
exists from simple key-value 
stores to the highly 
complicated graph databases, 
as shown in the following 
diagram:
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SQL vs NoSQL

SQL databases NoSQL databases

Triggered the need of rela/onal databases Triggered by the storage needs of Web 2.0 companies 
such as Facebook,Google and Amazon.com

Well structured data Not necessarily well structured – e.g., pictures, 
documents, web page descrip/on, video clips, etc.

Focus on data integrity focuses on availability of data even in the presence of 
mul/ple failures

Mostly Centralised spread data across many storage systems with a high 
degree of replica/on.

ACID proper/es should hold ACID proper/es may not hold[^62]
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NoSQL & CAP Theorem
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The OLD ACID Model

•  ACID, which stands for Atomicity, Consistency, Isola8on, and Durability1-1(app://
obsidian.md/index.html#fn-1-799ed3e7c985b657)

•  Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

•  Consistency (overused term), that here relates to the data invariants (integrity would be a 
beNer term IMHO)

•  Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

•  Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.
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The terms was coined in 1983 
by Theo Härder and Andreas 
Reuter 6(app://obsidian.md/
index.html#fn-6-799ed3e7c
985b657)
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Ra#onale to Change

• It’s ok to use stale data (Accoun2ng systems do this all the 2me. 
It’s called “closing out the books.”) ; 

• It’s ok to give approximate answers

• Use resource versioning -> say what the data really is about – no 
more, no less

• the value of x is 5 at 2me T
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The New BASE Model

BASE(Basically Available, So2-State, Eventually Consistent)

• Basic Availability: fulfill request, even in par3al consistency.

• So/ State: abandon the consistency requirements of the ACID model pre@y much completely

• Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID 
proper3es67.

• purely aliveness guarantee (reads eventually return the requested value); but

• does not make safety guarantees, i.e.,

• an eventually consistent system can return any value before it converges

67 at some point in the future, data will converge to a consistent state; 
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ACID vs. BASE trade-off

No general answer to whether your applica/on needs an ACID versus BASE 
consistency model.

Given BASE ’s loose consistency, developers need to be more knowledgeable and 
rigorous about consistent data if they choose a BASE store for their applica?on.

Planning around BASE limita.ons can some.mes be a major disadvantage when 
compared to the simplicity of ACID transac.ons.

A fully ACID database is the perfect fit for use cases where data reliability and 
consistency are essen6al.
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Extra Reads

• History of Data Models by Ilya Katsov

• Life beyond Distributed Transac:ons
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Refining the Ini+al View
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A Simplified view
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Our Physical View
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Our Physical View
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Our Physical View
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Our Physical View
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MongoDB
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History and Mo-va-on

• An open source and document-oriented database.

• Data is stored in JSON-like documents.

• Designed with both scalability and developer agility.

• Dynamic schemas.

• Automa@c data sharding
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What MongoDB is :

• An In-Memory Document Databases

• Strong consistency (C)

• Tuneably available (A)

• Horizontal Scalable (P)
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What MongoDB is not

• Always Available91

• No Schemas

• No transac8ons

• No joins

• Max document size of 16MB92

92 there will always be down2me when (i) the new leader is ge7ng elected or (ii) the client driver disconnects from 
the leader

91 Larger documents handled with GridFS
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Use Cases

•  Capture game events, scaling to meet high-write workloads.

•  Financial Services: Risk Analy@cs & Repor@ng, Trade Repository

•  manufacturing, automo@ve, retail, and energy

•  fast-changing sensor data captured from mul@ple 
devices and experiments

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 72

http://rictomm.me


When to consider MongoDB

• When you don't need high availability of data

• when you need fast and instant data recovery

• when do not want to sustain schema migra9on costs
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Advantages

• Full featured indexes

• Sophis4cated query language

• Easy mapping to object-oriented code

• Na4ve language drivers in all popular languages

• Simple to set up and manage

• Operates at in-memory speed wherever possible

• Auto-sharding built in

• Dynamically add / remove capacity with no down4me
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Terminology: SQL vs MongoDB

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collec*on

row document

column field

index index

table joins (e.g. select queries) embedded documents and linking

Primary keys _id field is always the primary key

Aggrega*on (e.g. group by) aggrega*on pipeline

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 76

http://rictomm.me


Data Model: Structure of a 
JSON-document:

The value of field:
 - Na0ve data types
 - Arrays
 - Other documents
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Data Model: Collec-ons of Documents

Rule: Every document must have an _id.
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Data Model: Embedded documents:
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Reference documents
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Storage: BSON Format

• Binary-encoded serializa1on of JSON-
like documents op1mized for space and 
speed

• BSON types are a superset of JSON 
types94

• Zero or more key/value pairs are stored 
as a single en1ty93

• Large en11es are prefixed with a length 
field to facilitate scanning

93 Each entry consists of a field name, a data type, and a value

94 JSON does not have a date or a byte array type, for example
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Opera&ons
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Create

Create a database

use database_name

Create a collec*on

db.createCollection(name, options)
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Insert

db.<collection_name>.insert({"name": "nguyen". "age": 24, "gender": "male"})

db.employee.insert({
    name: "sally",
    salary: 15000,
    designation: "MTS",
    teams: [ "cluster-management" ]
})`
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Read

  db.<collection_name>.find().pretty()

db.employee              #collection
    .find( { 
    salary: {$gt:18000}, #condition
        {name:1}         #projection
    }) 
.sort({salary:1})        #modifier
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Update

db.employee #collection
.update(
 {salary:{$gt:18000}}, #Update Criteria
 {$set: {designation: "Manager"}}, #Update Action 
 {multi: true} #Update Option 
)
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Delete

db.employee.remove(
     {salary:{$lt:10000}}, #Remove Criteria
)
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Aggregates

SQL-like aggrega-on func-onality

Pipeline documents from a collec2on pass through an aggrega2on pipeline

Expressions produce output documents based on calcula3ons performed on input 
documents

Example:

db.parts.aggregate( 
    {$group : {_id: type, totalquantity : 
    { $sum: quantity}
}})
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Save

db.employee.save(
    {  _id:ObjectId('string_id'),
       "name": "ben", 
       "age": 23, 
       "gender": 
       "male"
})

Drop

• Drop a database

• Drop it: 
db.dropDatabase()

• Drop a collec/on:

db.<collection_name>.drop()
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Mapping to SQL

SQL Statement MongoDB commands

SELECT * FROM table db.collec5on.find()

SELECT * FROM table WHERE ar5st = ‘Nirvana’ db.collec5on.find({Ar5st:”Nirvana”})

SELECT* FROM table ORDER BY Title db.collec5on.find().sort(Title:1)

DISTINCT .dis5nct()

GROUP BY .group()

>=, < $gte, $lt
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Comparison Operators

source
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Indexes

• B+ tree indexes

• An index is automa2cally created on the _id field (the primary key)

• Users can create other indexes to improve query performance or to enforce 
Unique values for a par2cular field

• Supports single field index as well as Compound index

• Like SQL order of the fields in a compound index maGers

• If you index a field that holds an array value, MongoDB creates separate 
index entries for every element of the array
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Sparse Indexes

• Sparse_- property of an index ensures that the index only contain 
entries for documents that have the indexed field. (so ignore 
records that do not have the field defined)

• If an index is both unique and sparse – then the system will 
reject records that have a duplicate key value but allow records 
that do not have the indexed field defined
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Architecture

• Mongod – Database instance

• Mongos - Sharding processes:

• Like a database router processes all requests

• Decides how many and which mongod should 
receive the query

• No local data

• Collects the results, and sends it back to the 
client.

• Config Server
– Stores cluster chunk ranges and locaEons
– Can have only 1 or 3 (producEon must have 3)
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Mongod and Mongos
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Client

• Mongo – an interac.ve shell ( a client)

• Fully func.onal JavaScript environment for use with a MongoDB

• You can have one mongos for the whole system no maAer how 
many mongods you have

• OR you can have one local mongos for every client if you wanted 
to minimize network latency.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 96

http://rictomm.me


Replica(on

For redundancy MongoDB provides asynchronous replica6on. 

Only one database node is in charge of write opera5ons at any 
given 5me (called primary server/node). 

Read opera)ons may go to this same server for strong consistency 
seman)cs or to any of its replica peers if eventual consistency is 
sufficient.
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Master Slave Replica/on

Consists of two servers out of one which takes the role of a master handling write requests and replica8ng those opera8ons to the 
second server, the slave.
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Replica Sets

Consists of groups of MongoDB nodes that work together to 
provide automated failover.
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Par$$oning

• called Sharding in MongoDB

• User defines shard key for par99oning

• Shard key defines range of data

• Key space is like points on a line

• Range is a segment of that line
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What is a Shard?

• Shard is a node of the cluster

• Shard can be a single mongod or a 
replica set

• Default max chunk size: 64mb

• MongoDB automa?cally splits & 
migrates chunks when max reached
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Auto-sharding

• Minimal effort required

• Enable Sharding for a database

• Shard collec9on within database

• Decide Sharding Strategy
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MongoDB Sharding Strategies

• Ranged

• Hashed

• Tag-aware
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Range Sharding

• Splits shards based on sub-range of a key (or also mul9ple keys combined)

• Simple Shard Key: {deviceId}

• Composite Shard Key: {deviceId, 9mestamp}
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Hash Sharding

• MongoDB applies a MD5 hash on the key when a hash shard key is used:

• Hash Shard Key(deviceId) = MD5(deviceId)

• Ensures data is distributed randomly within the range of MD5 values
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Tag Sharding

Tag-aware sharding allows subset of shards to be tagged, and 
assigned to a sub-range of the shard-key.

Example: Sharding User Data belong to users from 100 “regions”

Collec&on: Users, Shard Key: {uId, regionCode}

Tag based on macro regions
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Tag Sharding Example
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Which Sharding to use?
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Rou$ng and Balancing

• Queries routed to specific shards

• MongoDB balances cluster

• MongoDB migrates data to new nodes
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MongoDB Security

• SSL

• between client and server

• Intra-cluster communica7on

• Authoriza7on at the database level

• Read Only/Read+Write/Administrator
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