Foundation of Data Engineering

MCF Riccardo Tommasini
http:/rictcomm.me

riccardo.tommasini@insa-lyon.fr

INSTITUT NATIONAL
DES SCIENCES

INSA

APPLIQUEES

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

Recap

 The different roles of data engineer and scientist
 The intuition of "Data Pipeline" as a glue between roles

e The intuition of data quality and different levels of it

- However, the data pipeline has
been quite an abstract concept so far
- We still miss the elements that
iImplements the pipeline (Airflow)

- We did not discuss concrete
problems like durability and
distribution

http://rictomm.me

A Conceptual View of a Data Pipeline

'P r
Data Engineering Data Science

-—-s))

Raw Cleaned Curated
Data Data Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

obsidian://open?vault=dataeng&file=Data%20Pipeline.md
http://rictomm.me

Data Modeling

It is the process of defining the structure
of the data for the purpose of
communicating*! or to develop an
information systems??.

1 between functional and technical people to show data needed for
business processes

12between components of the information system, how data is stored
and accessed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

obsidian://open?vault=dataeng&file=Data%20Modeling.md
http://rictomm.me

What is a data model?

e A data model represents the structure
and the integrity of the data elements of
a (single) applications 2

 Data models provide a framework for
data to be used within information
systems by giving specific definitions
and formats.

 The literature of data management is
rich of data models that aim at providing
increased expressiveness to the modeller
and capturing a richer set of semantics.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 5

x-bdsk://DBLP:journals/sigmod/SpynsMJ02
http://rictomm.me

Any Example?

y

Project Department
title ID (PK)
startDate > name
endDate >| parentDepartmentID (FK)

departmentID (FK)

T

leadPersonID (FK)

A

Project_Members

Department_Members

projectID (FK)
personiD (FK)

departmentID (FK)
personlD (FK)

| g

Person

Organization

ID (PK)
entitylD (FK)
dayOfBirth

_ ID (PK)
Entity entitylD (FK)
(1D (PK) < departmentID (FK)
name taxid

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

Relational model dominance

Relational
model MongoDB,
Pre-relational sSQL Parallel DBMS Data Grid Apache Spark
1950 1970 1978 1989 1992 1995 2004 2009 2010

E. Codd’s Postgres Distributed MapReduce Neo4),

paper DBMS Apache Storm

Non-relational, Cloud computing, Big data era

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

Data models are perhaps the most
important part of developing software.
They have such a profound effect not only
on how the software is written, but also
on how we think about the problem that
we are solving®.

— Martin Kleppmann

13 Designing Data-Intensive Applications

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

https://dataintensive.net/
http://rictomm.me

Business

Opportunity Reduced
\ / Risk
Increased -
Effectiveness / \
Reduced
Responsive Costs
to Change

Minimum
Redundancy of

i Systems e Data
P Data ™

Systems Integration

Simple Interfaces Compatible

Data

Data Model

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

Level of Data Modeling

Conceptual: The data model defines
WHAT the system contains.

Logical: Defines HOW the system should
be implemented regardless of the DBMS.

Physical: This Data Model describes HOW
the information system will be

iImplemented using a specific technology
14

1 physical

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

f Data Modeling

e Purpa

Communicatio

holders Business Ti

Conceptual

‘ture Clarificatio!
lysts _ of Busines:
Data Stru

Tech
Implemel
a Physical

2gy, Ltd. 2016

10

Conceptual model is typically created by Business
stakeholders. The purpose is to organize, scope and define
business concepts and rules. Definitions are most important

this level.

Logical model is typically created by Data Architects. The
purpose is to developed technical map of rules and data
structures. Business rules, relationships, attribute become
visible. Conceptual definitions become metadata.

Physical model is typically created by DBA and developers.
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.

https://www.databass.dev/
http://rictomm.me

A Closer Look®’

Levels of Data Modeling

1>slides & video by Donna Burbank

The variety of data available
today encourages the design and
development of dedicated data
models and query languages that
can improve both Bl as well as
the engineering process itself.

https://www.slideshare.net/Dataversity/data-modeling-for-big-data
https://www.dataversity.net/ldm-webinar-data-modeling-big-data/
http://rictomm.me

We need help from Rudyard Kipling

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

12

http://rictomm.me

Conceptual

 Semantic Model (divergent)

e Describes an enterprise in terms of the language it uses (the
jargon).

e |t also tracks inconsistencies, i.e., semantic conflicts
e Architectural Model (convergent)

e More fundamental, abstract categories across enterprise

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

13

http://rictomm.me

Logical

Already bound to a technology, it typically refers already to
implementation details

e Relational

e Hierarchical

e Key-Value

e Object-Oriented
e Graph

Since it has a physical bias,
you might be tempted to
confuse this with the physical
model, but this is wrong.

http://rictomm.me

Physical

The physical level describes how data are Stored on a device.

e Data formats
e Distribution

e Indexes

e Data Partitions

e Data Replications

...an you are in the Big Data World

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 15

http://rictomm.me

Towards a Physical View

Before digging into the details of the physical view, we need to
unveil two premises

e A Big Data Premise (Workload)
e A Distributed System Premise: CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

16

CAP%20Theorem
http://rictomm.me

Big Data Premise

e Big data have an essential role in
today's pipeline design

<
3
Y
Y
=
]
<
)

e As we said, this is not just about the %ﬁﬁ' oAS
el . peugYly XY
size! i % 3 As?eA
. ul!:‘ﬁ;ﬁ Eé c0¥g,
 Volume: demands scalability of : i'i:.:n’-:.:n‘i'ﬁﬁ A®AS,
storage i i e ve
i Data at Scale

e Variety: calls for flexibility of schema

* Velocity: requires continuous N A N /
processing

- Once again the big data challenges
impact the design of our pipelines

- The are all relevant at many levels,
but volume Is the one that caused
most of the changes

- we need to relax some aspects of
the data systems

http://rictomm.me

Traditional Data Modelling Workflow
Analyse Analyse - Analyse
e Known as Schema on Write
e Focus on the modelling a schema that
can accommodate all needs Write Data
e Bad impact on

- Extract Transform Load

- Some analyses may no
longer be performed because
the data were lost at writing
time,

http://rictomm.me

Schema on Read

\

Analyse Analyse [...] / Analyse
e |load data first, ask question later

e All data are kept, the minimal schema

need for an analysis is applied when

needed “P:;V:‘:" AP:Z:""P“N Appsg‘:mm;m
e New analyses can be introduced in any

point in time

Collect Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 19

http://rictomm.me

So, what'’s a logical architecture for a
data engineering pipeline?

http://rictomm.me

Let's Talk about Workloads

"OLAP ™3 OLTP

* Analytical
* Slow queries
* denorma lized

* Historical data

Information
Operations
-
3

BUSINESS DATA WAREHOUSE | BUSINESS PROCESS

iccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 21

- OLTP systems are usually expected to be
highly available and to process
transactions with low latency, since they are
often critical to the operation of the business.
- OLAP queries are often written by
business analysts, and feed into reports that
help the management of a company make
better decisions (business intelligence).

http://rictomm.me

Online Transactional Processing

Because these applications are interactive, the access pattern
became known as online

Transactional means allowing clients to make low-latency reads
and writes—as opposed to batch processing jobs, which only run
periodically (for example, once per day).

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

22

http://rictomm.me

Refresh on ACID Properties

e ACID, which stands for Atomicity, Consistency, Isolation, and Durability'*
» Atomicity refers to something that cannot be broken down into smaller parts.
e |tis not about concurrency (which comes with the I)
e Consistency (overused term), that here relates to the data invariants (integrity would be a better term IMHO)
* [solation means that concurrently executing transactions are isolated from each other.
e Typically associated with serializability, but there weaker options.
» Durability means (fault-tolerant) persistency of the data, once the transaction is completed.

e A The terms was coined in 1983 by Theo Harder and Andreas Reuter °

1between functional and technical people to show data needed for business processes

1*Theo Harder and Andreas Reuter: “Principles of Transaction-Oriented Database Recovery,” ACM Computing
Surveys, volume 15, number 4, pages 287-317, December 1983. doi:10.1145/289.291

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 23

http://rictomm.me

Online Analytical Processing

An OLAP system allows a data analyst to look at different cross-

tabs on the same data by interactively selecting the attributes in
the cross-tab

Statistical analysis often requires grouping on multiple attributes.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

24

http://rictomm.me

Example

Consider this is a simplified version of the sales fact table joined
with the dimension tables, and many attributes removed (and some
renamed)

sales (itemname, color, clothessize, quantity)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 25

http://rictomm.me

item_name color clothes_size quantity
dress dark small 2
dress dark medium 6
pants pastel medium 0
pants pastel large 1
pants white small 3
pants white medium 0
shirt white medium 1
shirt white large 10
skirt dark small 2
skirt dark medium 5

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

26

http://rictomm.me

Cross-tabulation of sales by item name and color

dark pastel white total
skirt 8 35 10 53
dress 20 11 5 36
shirt 22 4 46 72
pants 23 42 25 90
total 73 92 102 267

columns header: color
rows header: item name

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

Cheat Sheet of OLAP Operations?'’

Pivoting: changing the dimensions used in a cross-tab

e E.g. moving colors to column names

Slicing: creating a cross-tab for fixed values only
e E.g fixing color to white and size to small

 Sometimes called dicing, particularly when values for multiple
dimensions are fixed.

Rollup: moving from finer-granularity data to a coarser granularity
 E.g. aggregating away an attribute

* E.g. moving from aggregates by day to aggregates by month or year

Drill down: The opposite operation - that of moving from coarser granularity data to finer-granularity data

1”Database System Concepts Seventh Edition Avi Silberschatz Henry F. Korth, S. Sudarshan McGraw-Hill ISBN
9780078022159 link

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 28

https://www.db-book.com/db7/slides-dir/PDF-dir/ch11.pdf
http://rictomm.me

Summary OLTP vs OLAP?*

Property OLTP

OLAP

Main read pattern Small number of records per
query, fetched by key

Aggregate over large number
of records

Main write pattern Random-access, low-latency
writes from user input

Bulk import (ETL) or event
stream

Primarily used by End user/customer, via web
application

Internal analyst, for decision
support

What data represents Latest state of data (current
point in time)

History of events that
happened over time

Dataset size Gigabytes to terabytes

Terabytes to petabytes

13 Designing Data-Intensive Applications

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

29

https://dataintensive.net/
http://rictomm.me

Data Lakes (Conceptual View)

DATA DATA LAKE ZONES CONSUMER SYSTEMS

TRANSIENT RAW TRUSTED REFINED %
stReaming ZONE ZONE ZONE ZONE el
. Data Catalog
Ingest, Tag, :;:)[t)l)::tMsetad.at?a, Data quality E"‘r\'c::’ Daz & Data Prep Tools
& Catalog Data } :tt .be:m b7 & Validation w" kIfllla Data Visualization
FILE DATA MU iy External Connectors
RELATIONAL

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 30

http://rictomm.me

Physical Architecture of a Big Data Platform ourccuco

MILANO 1863
CoTTTTT Ty K?,)- """""""""""""" b :
E Engines ¥ E
Consistent | : | Real-Time Machine Learning Stream Operational : E E Operations
Security & E Database Deep Learning Platform Processing Data Store : E E &
Governance | | ! \ |Orchestration
| HIVE Apache Apache Apache |} ! :
| LLAP Zeppelin Kafka USRI HDP Services [
Apache : TensorFlow o F :
| Tech Previe o - :
Ranger | ’ Apache e Apache Apache E : b 4 : Ambari
;| Dru Spark Storm HBASE |1 | : :
Apache E E E Bring your E
KNOX : o ol , | Cloudbreak
Apache On-Premises Cloud Storage Data Operating System
Atlas Data Storage (3, ADLS, WASB, GCS) (YARN) CPU/GPU/Memory O
(HDFS)
R Large, Shared Workloads, Multi-Tenant Clusters -------------------cncmuonnn-. .
| e E
: R a <& won = a :
X ON-PREMISES X
N b e e e o e e S -. - eSS .- .S S e .S oS e S ee e e .. S ee eo . S ... S-S .. -S .- """ """ """ ... ---® ’ 8

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 31

http://rictomm.me

Distributed System Premise

masini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

Data Partitioning

breaking a large database down into smaller ones

The main reason for wanting to partition data is
scalability®®

13 Designing Data-Intensive Applications

tommasini@insa-lyon.fr - @rictomm

For very large datasets, or very high query
throughput, that is not sufficient

- Different partitions can be placed on
different nodes in a shared-nothing cluster
- Queries that operate on a single partition
can be independently executed. Thus,
throughput can be scaled by adding more

nodes.

obsidian://open?vault=dataeng&file=Data%20Partitioning.md
https://dataintensive.net/
http://rictomm.me

What to know

e |f some partitions have more data or queries than others the
partitioning is skewed

e A partition with disproportionately high load is called a hot spot

e For reaching maximum scalability (linear) partitions should be
balanced

Let's consider some partitioning strategies, for simplicity we
consider Key,Value data.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 34

http://rictomm.me

Partitioning Strategies

 Round-robin randomly assigns new keys to the partitions.
e Ensures an even distribution of tuples across nodes;
 Range partitioning assigns a contiguous key range to each node.

 Not necessarily balanced, because data may not be evenly
distributed

 Hash partitioning uses a hash function to determine the target
partition. - If the hash function returns i, then the tuple is placed

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 35

http://rictomm.me

CAP Theorem (Brewer’s Theorem)

It is impossible for a distributed computer system to simultaneously provide all three of
the following guarantees:

e Consistency: all nodes see the same data at the same time

* Availability: Node failures do not prevent other survivors from continuing to operate
(a guarantee that every request receives a response whether it succeeded or failed)

* Partition tolerance: the system continues to operate despite arbitrary partitioning
due to network failures (e.g., message loss)

A distributed system can satisfy any two of these guarantees at the same time but not
all three.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 36

obsidian://open?vault=dataeng&file=CAP%20Theorem.md
http://rictomm.me

CAP Systems

CA Guarantees to give a CP Guarantees responses
i correct response but only : are correct even if there are

: while network works fine network failures, but response
i (Centralised / Traditional) i may fail (Weak availability)

-
-
‘-I'...I..l.I..IIll...I-.I.I...Ill..-Il...l...ll.....l...-:. .‘ ..
*
.
.
.
.
.
.
.
..
.

(No intersection)

AP: Always provides a

“best-effort” response even in :
presence of network failures

http://rictomm.me

The network is not reliable

In a distributed system, *a network (of networks) * failures can, and
will, occur.

Since We cannot neglect Partition Tolerance the remaining option
is choosing between Consistency and Availability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

38

http://rictomm.me

We cannot neglect Partition Tolerance

Not necessarily in a mutually exclusive manner:
e CP: A partitioned node returns

e the correct value

e a timeout error or an error, otherwise

e AP: A partiioned node returns the most recent version of the
data, which could be stale.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

39

http://rictomm.me

Implications of CAP Theorem

e change the transactionality gurantees
e redesign the data workflow ()

e reimagine the data processing systems (noSQL)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

40

http://rictomm.me

The Advent of NoSQL

Google, Amazon, Facebook, and DARPA
all recognised that when you scale
systems large enough, you can never put
enough iron in one place to get the job
done (and you wouldn’t want to, to
prevent a single point of failure).

Once you accept that you have a
distributed system, you need to give up
consistency or availability, which the
fundamental transactionality of traditional
RDBMSs cannot abide.

--Cedric Beust

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

The name “NoSQL" is unfortunate, since it
doesn't actually refer to any particular
technology—it was originally intended simply
as a catchy Twitter hashtag for a meetup on
open source, distributed, non-relational
databases in 2009 Cf Pramod J. Sadalage
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN:
9/78-0-321-82662-6

obsidian://open?vault=dataeng&file=NoSQL.md
https://beust.com/weblog/2010/02/25/nosql-explained-correctly-finally/
http://rictomm.me

The Reasons Behind

 Queryability: need for specialised query operations that are not
well supported by the relational model

 Schemaless: desire for a more dynamic and expressive data
model than relational

e Flexibility: need to accomodate the "schema on read"
phylosophy

- Big Data: need for greater
scalability than relational databases
can easlly achieve in write

- Open Source: a widespread

preference for free and open source
software

http://rictomm.me

Object-Relational Mismatch

Most application development today is done in object-oriented
programming languages

An awkward translation layer is required between the objects in

the application code and the database model of tables, rows, and
columns

Object-relational mapping (ORM) frameworks like Hibernate try to
mild the mismatch, but they can’t completely hide the differences

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 43

http://rictomm.me

NoSQL Timeline
ultiVa
aaaaa
NoSQL Term is coined

by Carlo Strozzi

CCCCCCC

aaaaaaaaaaaaaaaa
MMMMMM

Project Voldemort
Redis

ooooooooooooooo

the idea of NOSQL actually
originates in the late 60s
together with the raise of the
raise of object-oriented
languages, but become
popular later.

http://rictomm.me

Shall we rethink the three-layered
modelling for Big Data?

http://rictomm.me

Designing NoSQL Data
Structures

e NoSQL data structures driven by application

design. Product

 Need to take into account necessary CRUD

operations
P Product_Nan

Product_Typ
Product_Use

e To embed or not to imbed. That is the
question!

e Rule of thumb is to imbed whenever

possible. Product_Nan

Product_Typ

 No modelling standards or CASE®*¢ tools! Product_Use

¢ computer aided software engineering

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 46

http://rictomm.me

Data Modeling for Big Data

e Conceptual Level remains:

e ER, UML diagram can still be used for no SQL as they output a model that
encompasses the whole company.

* Phsyical Level remains: NoSQL solutions often expose internals for obtaining flexibility,
e.g.,

o Key-value stores API
e Column stores

e |og structures

e [ogical level no longer make sense. Schema on read focuses on the query side. _

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 47

http://rictomm.me

NoSQL Familty

Document Database

Graph Databases

'.MarkLogiC‘

l |
‘: Couchbase

. mongoDB

. () Neo4j

InfiniteGraph

The Distributed Graph Database

Wide Column Stores

Key-Value Databases

—/'—WCassandra

AEROSPIKE

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

amazon

DynamoDB

sriak

aCCcurmuLo

s AP ACHE
& redis HBASE
Amazon SimpleDB

48

http://rictomm.me

Kinds of NoSQL (2/4)

NoSQL solutions fall into four major areas:

e Key-Value Store
e A key that refers to a payload (actual content / data)
 Examples: MemcacheDB, Azure Table Storage, Redis, HDFS
e Column Store
e Column data is saved together, as opposed to row data
o Super useful for data analytics

e Examples: Hadoop, Cassandra, Hypertable

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

49

http://rictomm.me

Kinds of NoSQL (4/4)

e Document / XML / Object Store
e Key (and possibly other indexes) point at a serialized object
e DB can operate against values in document
e Examples: MongoDB, CouchDB, RavenDB

 Graph Store

 Nodes are stored independently, and the relationship between nodes (edges)
are stored with data

e Examples: AllegroGraph, Neo4j

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

50

http://rictomm.me

Complexity Across Families

NoSQL

Key-Value
Stores

Size

Column
Families

Document
Databases

Graph
Databases

>

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Complexity

51

http://rictomm.me

Dependencies Across Families

A single key (column) value columns A single row

KVPairs r B N
J N\ /

KV Pairs to Flat Rows

—
colA | valuel colFoo | aval milk whlte)

colA | valuel | | long col name num
U
A [[l Lo

Flat Rows to Composite Rows

WS

Composite Rows to Multi-

Multi-Level Embedded Level Embedded Documents

Documents (e 3) N
to Semantic Graph column A—p column B—p
P row A value value
> column B—¥»long
e bl e row B value
column C—» huge
- - i hS value
e L Family 1 L Family 2
- i
Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 52

a hatural evolutionary path
exists from simple key-value
stores to the highly
complicated graph databases,
as shown in the following
diagram:

http://rictomm.me

SQL vs NoSQL

SQL databases

NoSQL databases

Triggered the need of relational databases

Triggered by the storage needs of Web 2.0 companies
such as Facebook,Google and Amazon.com

Well structured data

Not necessarily well structured - e.g., pictures,
documents, web page description, video clips, etc.

Focus on data integrity

focuses on availability of data even in the presence of
multiple failures

Mostly Centralised

spread data across many storage systems with a high
degree of replication.

ACID properties should hold

ACID properties may not hold[*62]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

53

http://rictomm.me

NoSQL & CAP Theorem

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

54

http://rictomm.me

Cons

\

IS¢

)

ncy

CP

MongoDB
Terrastore

-

N-0Oriented

Document-Oriented

SimpleDB

CouchDB
SHELS

2artition Tolerance:

55

https://blog.nahurst.com/visual-guide-to-nosql-systems

The 0B ACID Model

 ACID, which stands for Atomicity, Consistency, Isolation, and Durability1-1(app:/
obsidian.md/index.html#fn-1-799ed3e7c985b657)

e Atomicity refers to something that cannot be broken down into smaller parts.
e [tis not about concurrency (which comes with the I)

e Consistency (overused term), that here relates to the data invariants (integrity would be a
better term IMHO)

e [|solation means that concurrently executing transactions are isolated from each other.
e Typically associated with serializability, but there weaker options.

e Durability means (fault-tolerant) persistency of the data, once the transaction is completed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 56

The terms was coined in 1983
by 1'heo Harder and Andreas
Reuter 6(app://obsidian.md/
iIndex.html#fn-6-/99%ed3e/c
O85b657)

obsidian://open?vault=dataeng&file=1-1.md
http://rictomm.me

Rationale to Change

e It's ok to use stale data (Accounting systems do this all the time.
It’s called “closing out the books.”) ;

e It's ok to give approximate answers

e Use resource versioning -> say what the data really is about - no
more, no less

e thevalueofxis5attimeT

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 57

http://rictomm.me

The New BASE Model

BASE(Basically Available, Soft-State, Eventually Consistent)

e Basic Availability: fulfill request, even in partial consistency.
o Soft State: abandon the consistency requirements of the ACID model pretty much completely

 Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID
properties®’.

e purely aliveness guarantee (reads eventually return the requested value); but
e does not make safety guarantees, i.e.,

e an eventually consistent system can return any value before it converges

®7at some point in the future, data will converge to a consistent state;

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

58

http://rictomm.me

ACID vs. BASE trade-off

No general answer to whether your application needs an ACID versus BASE
consistency model.

Given BASE s loose consistency, developers need to be more knowledgeable and
rigorous about consistent data if they choose a BASE store for their application.

Planning around BASE limitations can sometimes be a major disadvantage when
compared to the simplicity of ACID transactions.

A fully ACID database is the perfect fit for use cases where data reliability and
consistency are essential.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 59

http://rictomm.me

Extra Reads

* History of Data Models by llya Katsov

e Life beyond Distributed Transactions

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

60

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://rictomm.me

Refining the Initial View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

61

http://rictomm.me

Logical architecture of a data engineering pipeline

POLITECNICO
MILANO 1863

<<anything>>
Bl #1.a Bl #1.b Bl #2.a Bl #2.b e.g., algorithm for process
optimization
ETLs #1.a ETLs #1.b ETLs #2.a ETLs #2.b ETLs #n.m [...]

Data View #1 Data View #2 [...] Data View #n
ETLs #1 ETLs #2 ETLs #n

Big Data Long Term Storage

Data format optimized for querying, but without an integrated schema (e.g., ORC, parquet)

Data Wrangling

Raw Big Data Landing Zone

Any data, any form, many schemata (if any) (e.g., csv, json, txt, ...)

Data Ingestion

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 62

http://rictomm.me

A Simplified view

'P 'F
Data Engineering Data Science

-—-s))

Ingestion Staging Production
Data Data Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

63

http://rictomm.me

Our Physical View

M

Data Engineering

Ingestion
Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

M

Data Science

Production
Data

64

http://rictomm.me

Our Physical View

M

Data Engineering

Ingestion
Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

M

Data Science

Production
Data

65

http://rictomm.me

Our Physical View

M

Data Engineering

Ingestion

Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

M

Data Science

Production
Data

66

http://rictomm.me

Our Physical View

M

Data Engineering

Ingestio%

Data

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Data Science

Production
Data

67

http://rictomm.me

MongoDB

0 MongoDB.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

68

http://rictomm.me

History and Motivation

e An open source and document-oriented database.

e Data is stored in JSON-like documents.

 Designed with both scalability and developer agility.
e Dynamic schemas.

e Automatic data sharding

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

69

http://rictomm.me

What MongoDB is :

e An In-Memory Document Databases
e Strong consistency (C)
e Tuneably available (A)

e Horizontal Scalable (P)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Consistency CA

CP

Partition
Tolerance

Availability

70

obsidian://open?vault=dataeng&file=Document%20Databases.md
http://rictomm.me

What MongoDB is not

e Always Available™
* No Schemas
 No transactions
e No joins

e Max document size of 16MB??

’1Larger documents handled with GridFS

”2there will always be downtime when (i) the new leader is getting elected or (ii) the client driver disconnects from
the leader

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 71

http://rictomm.me

Use Cases

SEGA

. Capture game events, scaling to meet high-write workloads.

HSBC <>
o Financial Services: Risk Analytics & Reporting, Trade Repository

BOSCH
o manufacturing, automotive, retail, and energy

ThermoFisher . .
e scleNTIFIc fast-changing sensor data captured from multiple

devices and experiments

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 72

http://rictomm.me

When to consider MongoDB

e When you don't need high availability of data
e when you need fast and instant data recovery

e when do not want to sustain schema migration costs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

73

http://rictomm.me

Advantages

e Full featured indexes

e Sophisticated query language

e Easy mapping to object-oriented code

e Native language drivers in all popular languages
e Simple to set up and manage

e Operates at in-memory speed wherever possible
e Auto-sharding built in

e Dynamically add / remove capacity with no downtime

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 74

http://rictomm.me

In-Memory

Beller data local .
ty Caching Distributed Architecture

I

p

"N

Replication /HA

Relational MongoDB Horizontal Scaling

)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 75

http://rictomm.me

Terminology: SQL vs MongoDB

SQL Terms/Concepts MongoDB Terms/Concepts
database database

table collection

row document

column field

index index

table joins (e.g. select queries)

embedded documents and linking

Primary keys

_id field is always the primary key

Aggregation (e.g. group by)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

aggregation pipeline

76

http://rictomm.me

Data Model: Structure of a
JSON-document:

The value of field:

- Native data types
- Arrays

- Other documents

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

"

n n

name: "sue”,
age: 26,

status: "A",

groups: ["news”, "sports”]

<«— fie
<+— fie
+—— fie
+—— fie

d:va
d:va
d:va

d:va

77

ue
ue
ue

ue

http://rictomm.me

Data Model: Collections of Documents

na
ag

gr

na

ag
st

gr

{

name: "al”,

age: 18,

status: "D",

groups: ["politics”, "news"]
)

Collection

Rule: Every document must have an _id.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

78

http://rictomm.me

Data Model: Embedded documents:

{

_1d: <ObjectIdil1>,
username: "123xyz",

contact: {
phone: "123-456-7890",

email: "xyz@example.com”

I

access: {
level: 5,

group: "dev”

)

p
p

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Embedded sub-

document

Embedded sub-

document

79

http://rictomm.me

Reference documents

user document

contact document

\

{

}

_id: <ObjectIdi1>,

username: "123xyzm\\\\

{
_1d: <ObjectId2>,

user_id: <ObjectIdl>,

/phone: "123-456-7890",

}

email: "xyz@example.com”

access document

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

{
_1d: <ObjectId3>,

user_id: <ObjectIdil>,
level: 5,
group: "dev"

3

80

http://rictomm.me

Storage: BSON Format

e Binary-encoded serialization of JSON-
like documents optimized for space and
speed

e BSON types are a superset of JSON
types”

e Zero or more key/value pairs are stored
as a single entity”?

e Large entities are prefixed with a length
field to facilitate scanning

?4 JSON does not have a date or a byte array type, for example

?3Each entry consists of a field name, a data type, and a value

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

BSON:
\x16'x00'x00'x00
\x02
name'\x00
x06'x00\x00'x00Devang\x00
\x00

// total document size
// 0x02 = type String
// field name

// field value

81

http://rictomm.me

+ —

Operations

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

82

http://rictomm.me

Create

Create a database

use database name

Create a collection

db.createCollection(name, options)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

83

http://rictomm.me

Insert

db.<collection_name>.insert({"name": "nguyen'". "age":

db.employee.insert({
name: "sally",
salary: 15000,
designation: "MIS",
teams: ["cluster-management"]

1)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

24,

"gender":

llma'Lell})

84

http://rictomm.me

Read

db.<collection name>.find().pretty()

db.employee #collection
find({
salary: {$gt:18000}, #condition
{name:1} #projection
1)

.sort({salary:1}) #modifier

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

85

http://rictomm.me

Update

db.employee

.update(

{salary:{$gt:18000}},

{$set: {designation: "Manager'"}?},
{multi: true}

)

Multi-option allows multiple
document update

http://rictomm.me

Delete

db.employee.remove(
{salary:{$lt:10000}}, #Remove Criteria

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

87

http://rictomm.me

Aggregates

SQL-like aggregation functionality
Pipeline documents from a collection pass through an aggregation pipeline

Expressions produce output documents based on calculations performed on input
documents

Example:

db.parts.aggregate(
{$group : { id: type, totalquantity :
{ $sum: quantity}

11)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

88

http://rictomm.me

Save Drop

db.employee.save(Drop a database
{ _id:0Objectld('string_1id'),
Ilnamell . Ilbenll , ° Drop it :
"age": 23,
'gender” - db.dropDatabase()
"male”

19 e Drop a collection:

db.<collection name>.drop()

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

89

http://rictomm.me

Mapping to SQL

SQL Statement MongoDB commands

SELECT * FROM table db.collection.find()

SELECT * FROM table WHERE artist = ‘Nirvana’ db.collection.find({Artist;”Nirvana”})

SELECT* FROM table ORDER BY Title db.collection.find().sort(Title:1)
DISTINCT distinct()

GROUP BY .group()

>= < $ste, $It

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

920

http://rictomm.me

Comparison Operators

Name __|Description

Seq
Sgt, Sgte

Slt, Slte
Sne

Sin
Snin
Sor
Sand
Snot
Snor

Sexists

source

Matches value that are equal to a specified value

Matches values that are greater than (or equalto a specified value
Matches values less than or (equal to) a specified value

Matches values that are not equal to a specified value

Matches any of the values specified in an array

Matches none of the values specified in an array

Joins query clauses with a logical OR returns all

Join query clauses with a loginal AND

Inverts the effect of a query expression

Join query clauses with a logical NOR

Matches documents that have a specified field

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

91

https://docs.mongodb.org/manual/reference/operator/query
http://rictomm.me

Indexes

e B+ tree indexes
 Anindex is automatically created on the _id field (the primary key)

e Users can create other indexes to improve query performance or to enforce
Unique values for a particular field

e Supports single field index as well as Compound index
e Like SQL order of the fields in a compound index matters

e |fyou index a field that holds an array value, MongoDB creates separate
index entries for every element of the array

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 92

http://rictomm.me

Sparse Indexes

e Sparse_- property of an index ensures that the index only contain
entries for documents that have the indexed field. (so ignore
records that do not have the field defined)

e |[f an index is both unique and sparse - then the system will

reject records that have a duplicate key value but allow records
that do not have the indexed field defined

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 93

http://rictomm.me

Architecture

e Mongod - Database instance
e Mongos - Sharding processes:
e Like a database router processes all requests

e Decides how many and which mongod should
receive the query

e No local data

e Collects the results, and sends it back to the
client.

e Config Server
- Stores cluster chunk ranges and locations
- Can have only 1 or 3 (production must have 3)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 94

http://rictomm.me

Mongod and Mongos

=
$ or X

App Server

e
=

App Server

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

95

http://rictomm.me

Client

e Mongo - an interactive shell (a client)
e Fully functional JavaScript environment for use with a MongoDB

 You can have one mongos for the whole system no matter how
many mongods you have

e OR you can have one local mongos for every client if you wanted
to minimize network latency.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 96

http://rictomm.me

Replication

For redundancy MongoDB provides asynchronous replication.

Only one database node is in charge of write operations at any
given time (called primary server/node).

Read operations may go to this same server for strong consistency
semantics or to any of its replica peers if eventual consistency is

sufficient.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 97

http://rictomm.me

Master Slave Replication

Consists of two servers out of one which takes the role of a master handling write requests and replicating those operations to the
second server, the slave.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

98

http://rictomm.me

Replica Sets

Consists of groups of MongoDB nodes that work together to
provide automated failover.

Replica Sets are described as
an "an elaboration on the
existing master/slave
replication, adding automatic
fallover and automatic
recovery of member nodes”

http://rictomm.me

Partitioning
e called Sharding in MongoDB
o User defines shard key for partitioning
e Shard key defines range of data

e Key space is like points on a line

e Range is a segment of that line

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 100

http://rictomm.me

What is a Shard?

e Shard is a node of the cluster

e Shard can be a single mongod or a
replica set

e Default max chunk size: 64mb

e MongoDB automatically splits &
migrates chunks when max reached

Secondary

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 101

http://rictomm.me

Auto-sharding

e Minimal effort required
 Enable Sharding for a database
e Shard collection within database

e Decide Sharding Strategy

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 102

http://rictomm.me

MongoDB Sharding Strategies

e Ranged
e Hashed

e Tag-aware

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 103

http://rictomm.me

Range Sharding

» Splits shards based on sub-range of a key (or also multiple keys combined)
e Simple Shard Key: {deviceld}

e Composite Shard Key: {deviceld, timestamp}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 104

http://rictomm.me

Hash Sharding

* MongoDB applies a MD5 hash on the key when a hash shard key is used:
e Hash Shard Key(deviceld) = MD5(deviceld)

e Ensures data is distributed randomly within the range of MD5 values

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 105

http://rictomm.me

Tag Sharding

Tag-aware sharding allows subset of shards to be tagged, and
assigned to a sub-range of the shard-key.

Example: Sharding User Data belong to users from 100 “regions”
Collection: Users, Shard Key: {uld, regionCode}

Tag based on macro regions

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 106

http://rictomm.me

Tag Sharding Example

Collection: Users, Shard Key: {uld, regionCode}

MaxKey,50

MaxKey, MaxKey

West MinKey, MinKey
East MinKey, 50
Shard1, Shard2, Shard3,
Tag=West Tag=West Tag=East
Gl Er— Bl W Ty e R
([N | ()
i Nl Nami &
I 1| | I I I
I Secondary I I Secondary I I Secondary I
| 1| | I I I
: Secondary : : Secondary : : Secondary :
N =/ N / \ /

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

(
I
I
|
I
I
I

Shard4,
Tag=East

Y i S

Secondary

Secondary

Assign Regions
1-50 to the West

Assign Regions
51-100 to the
East

107

http://rictomm.me

Which Sharding to use?

Usage Required Strategy
Scale Range or Hash
Geo-Locality Tag-aware
Hardware Optimization Tag-aware

Lower Recovery Times Range or Hash

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 108

http://rictomm.me

Routing and Balancing

 Queries routed to specific shards
e MongoDB balances cluster

e MongoDB migrates data to new nodes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

http://rictomm.me

MongoDB Security

e SSL
e between client and server
e [ntra-cluster communication

e Authorization at the database level

e Read Only/Read+Write/Administrator

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 110

http://rictomm.me

References

e Mongodb.com

e No SQL Distilled by P. Sadalage and M.
Fowler

e MongoDB Applied Design Patters by R.

Copeland

e The Definitive Guide to MongoDB by
Plugge, Membry and Hawkins

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Pramod J. Sadalage Martin Fowler

NoS(OL

A Brief Guide to the Emerging World of Polyglot Persistence

Distilled

-y

http://www.mongodb.com/nosql-explained
http://rictomm.me

