
Founda'on of Data Engineering
MCF Riccardo Tommasini

h"p://rictomm.me

riccardo.tommasini@insa-lyon.fr

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me

What is a Graph?

Informally a graph is a set of nodes joined by a set of lines or arrows.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 2

http://rictomm.me

Graph

G is an ordered triple
 - V is a set of nodes, points, or ver3ces.
 - E is a set, whose elements are known as edges or lines.
 - is a func3on
 - maps each element of E
 - to an unordered pair of ver3ces in V.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 3

http://rictomm.me

Vertexes and Edges

• A Vertex is a Basic Element

• Drawn as a node or a dot .

• The Vertex set of a graph *G is usually denoted by V

• An edge is set of two elements ^2cb8a1

• Drawn as a line connecBng two verBces, called end verBces, or
endpoints.

• The edge set of G is usually denoted by E(G), or E.
Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 4

http://rictomm.me

Example

V:={1,2,3,4,5,6}

E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 5

http://rictomm.me

Directed Graph (digraph)

Edges have direc-ons, i.e. an edge is an
ordered pair of nodes

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 6

http://rictomm.me

Weighted graphs

are graphs for which each edge has an
associated weight, usually given by a
weight func7on

 : .

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 7

http://rictomm.me

Paths

A path is a sequence of ver/ces such that
there is an edge from each vertex to its

successor.

• A path is simple if each vertex is dis1nct.

• If there is path p from u to v then we
say v is reachable from u via p .

Example:

 Simple path from 1 to 5= [1, 2, 4, 5]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 8

http://rictomm.me

Cycle

• A path from a vertex to itself is called a cycle .

• A graph is called cyclic if it contains a cycle;

• otherwise it is called acyclic

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 9

http://rictomm.me

Connec&vity

• A graph is connected if

• you can get from any node to any other by following a
sequence of edges OR

• any two nodes are connected by a path.

• A directed graph is strongly connected if there is a directed path
from any node to any other node.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 10

http://rictomm.me

Sparsity/Density

A graph is sparse if

A graph is dense if

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 11

http://rictomm.me

Degree

Number of edges incident on a node

E.g., the degree of 5 is 3.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 12

http://rictomm.me

Degree (Directed Graphs)

In degree: Number of edges entering

Out degree: Number of edges leaving

Degree =indegree+outdegree

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 13

http://rictomm.me

Graph Types

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 14

http://rictomm.me

Bipar&te graph

• V can be par**oned into 2 sets and
 such that implies

• either and

• or and

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 15

http://rictomm.me

Complete Graph

• Denoted

• Every pair of ver1ces are adjacent

• Has n(n-1) edges

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 16

http://rictomm.me

Planar Graph

• Can be drawn on a plane such that no
two edges intersect

• is the largest complete graph that is
planar

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 17

http://rictomm.me

Tree

Connected Acyclic Graph

Two nodes have exactly one path between
them

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 18

http://rictomm.me

Hypergraph

• Generaliza*on of a graph,

• edges can connect any number of ver*ces.

• Formally, an hypergraph is a pair (X,E) where

• X is a set of elements, called nodes or ver*ces, and

• E is a set of subsets of X, called hyperedges.

• Hyperedges are arbitrary sets of nodes,

• contain an arbitrary number of nodes.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 19

http://rictomm.me

Subgraph

• Vertex and edge sets are subsets of those of G

• a supergraph of a graph G is a graph that contains G as a
subgraph.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 20

http://rictomm.me

Spanning subgraph

• Subgraph G has the same vertex set as H.

• Possibly not all the edges

• "G spans H".

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 21

http://rictomm.me

Graph ADT

• In computer science, a graph is an abstract data type (ADT)

• that consists of

• a set of nodes and

• a set of edges

• establish rela=onships (connec=ons) between the nodes.

• The graph ADT follows directly from the graph concept from
mathema=cs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 22

http://rictomm.me

Representa)on (Matrix)

• Incidence Matrix

• E x V

• [edge, vertex] contains the edge's data

• Adjacency Matrix

• V x V

• Boolean values (adjacent or not)

• Or Edge Weights

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 23

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 24

http://rictomm.me

Representa)on (List)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 25

http://rictomm.me

Graph Algorithms
• Shortest Path

• Single Source

• All pairs (Ex. Floyd Warshall)

• Network Flow

• Matching

• BiparBte

• Weighted

• Topological Ordering

• Strongly Connected

• Biconnected Component / Ar1cula1on Point

• Bridge

• Graph Coloring

• Euler Tour

• Hamiltonian Tour

• Clique

• Isomorphism

• Edge Cover

• Vertex Cover

• Visibility

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 26

http://rictomm.me

Graph Technologies

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 27

http://rictomm.me

Graph Databases

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 28

http://rictomm.me

Back to One Machine

• Graph Databases are tailored for OLTP workloads.

• Typically, you are interested in selec>ng the subset of your graph
based on a condi>on and then operate on that.

• Most of them work in a centralized fashion

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 29

http://rictomm.me

The Case of Graph OLAP

• OLAP queries over the en2re graph will not be so efficient (why?)

• Graph OLAP algorithms are oAe itera&ve, and need to process
the whole graph.

• Hard to Scale out because graph are hard to par22on

• If you're interested join our Spring courses LTAT.02.003 and
LTAT.02.010

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 30

http://rictomm.me

Graph DBs VS. RDBMSs

• RDBs are well fi-ed to find generice
queries, thanks to the internal structure
of the tables.

• Aggrega>ons over a complete dataset
are "easy".

• However, Rela>onal databases struggle
with highly connected domains.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 31

http://rictomm.me

Performance

In rela(onal databases, the performance
of join-intensive queries deteriorates as
the dataset gets bigger.

On the other hand, graph database
performance tends to remain rela5vely
constant, even as the dataset grows.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 32

http://rictomm.me

(Nope, indexes)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 33

http://rictomm.me

Clarke's Third Law: Any sufficiently advanced
technology is indis4nguishable from magic.

Agility

Despite their names though, rela2onal
databases are less suited for exploring
rela2onships. Thus, the complexity is pushed
on the query language.

In graph databses, rela0onships are first-class
moreover, they have no schema. Thus, API
and query language are much simpler and
agile.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 34

http://rictomm.me

Flexibility

Changing schemas in Rela.onal Databases
may break queries and store procedures or
require to change the integrity constraints.

Graphs are naturally addi0ve, we can add
new rela0onships or nodes without
disturbing exis0ng queries and applica0on
func0onality.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 35

http://rictomm.me

Graph DBs VS. NoSQL

• Are Rela)onalDB NoSQL?

• In principles, yes. However they do not target OLAP...

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 36

http://rictomm.me

Nosql also Lacks Rela-onships

• Most NOSQL databases whether key-
value, document, or column oriented
store sets of disconnected documents/
values/columns.

• This makes it difficult to use them for
connected data and graphs.

• One well-known strategy for adding
relaEonships to such stores is to embed
an aggregate's idenEfier inside the field
belonging to another aggregate.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 37

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 38

http://rictomm.me

Nosql also Lacks Rela-onships

• We can join aggregates at the applica-on level

• Seeing a reference to order: 1234 in the record beginning user:
Alice, we infer a connec-on between user: Alice and order: 1234.

• Because there are no iden-fiers that "point" backward (the foreign
aggregate "links" are not reflexive.

• How to answer: Who customers that bought a par0cular product?

• Aggregates quickly becomes prohibi-vely expensive.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 39

http://rictomm.me

Graph DBs embrace Rela0onships

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 40

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 41

http://rictomm.me

Popularity of Graph DBs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 42

http://rictomm.me

Which one to choose?!111

111 Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O'Reilly Media, Inc.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 43

http://rictomm.me

Graph Storage and Processing

• Na#ve Graph Storage benefits traversal performance at the
expense of making some queries that don't use traversals
difficult or memory intensive.

• Non-Na#ve graph storage, e.g., usuing a rela?onal backend, is
purpose-built stack and can be engineered for performance and
scalability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 44

http://rictomm.me

Na#ve Graph Processing

A graph database has na.ve processing capabili.es if it uses index-
free adjacency.

A node directly references its adjacent nodes, ac2ng as a micro-
index for all nearby nodes.

With index-free adjacency, bidirec3onal joins are effec3vely
precomputed and stored in the database as rela3onships1140.

1140 It is cheaper and more efficient than doing the same task with indexes, because query =mes are propor=onal to
the amount of the graph searched.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 45

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 46

http://rictomm.me

Storage

Doubly Linked Lists in the Rela3onship Store

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 47

http://rictomm.me

Non-na&ve processing

• A nonna've graph database engine uses
(global) indexes to link nodes together,

• Example:

• To find Ali- ce’s friends we have first
to perform an index lookup, at cost
O(log n).

• If we wanted to find out who is
friends with Alice, we would have to
one lookup for each node that is
poten'ally friends with Alice. This
makes the cost O(m log n).

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 48

http://rictomm.me

Neo4J Graph DB112

• It supports ACID transac0ons

• It implements a Property Graph Model efficiently
down to the storage level.

• It is useful for single server deployments to query
over medium sized graphs due to using memory
caching and compact storage for the graph.

• Its implementa0on in Java also makes it widely
usable.

• It provides master-worker clustering with cache
sharding for enterprise deployment.

• It uses Cypher as a declara0ve query language.

112 url

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 49

https://neo4j.com
http://rictomm.me

AllegroGraph Seman/c Graph DB114

• AllegroGraph is a graph database and applica4on
framework for building Seman4c Web applica4ons.

• It can store data and meta-data as triples.

• It can query these triples through various query
APIs like SPARQL (the standard W3C query
language).

• It supports RDFS++ as well as Prolog reasoning
with its built-in reasoner.

• AllegroGraph includes support for Federa4on,
Social Network Analysis, Geospa4al capabili4es
and Temporal reasoning.

114 h%ps://franz.com/agraph/allegrograph/

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 50

https://franz.com/agraph/allegrograph/
http://rictomm.me

Graph Data Models

• Two Popular Graph Data Models:

• Edge-Labelled Graphs

• Property A<ributed Graphs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 51

http://rictomm.me

Property Graphs Vs. Edge-Labelled Graphs

• Edge-Labelled Graphs are widely adopted in prac8ce. E.g. Resource
Descrip8on Framework (RDF) (Figure in the previous slide).

• However, it is oEen cumbersome to add informa8on about the edges to
an edge-labelled graph.

• For example, if we wished to add the source of informa8on, for example,
that the acts-in rela8ons were sourced from the web-site IMDb.

• Adding new types of informa8on to edges in an edge-labelled graph may
thus require a major change to the graph's structure, entailing a significant
cost.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 52

http://rictomm.me

Property Graph Example

Varia%ons of the Property Graph Data Model (PGM)

• Direc&on. A property graph is a directed graph; the PGM defines edges as ordered pairs of ver9ces.

• Mul&-graph. A property graph is a mul9-graph; the PGM allows mul9ple edges between a given pair of ver9ces.

• Simple graphs (in contrast to mul9-graphs) addi9onally require to be injec9ve (one-to-one).

• Labels. A property graph is a mul9-labeled graph; the PGM allows ver9ces and edges to be tagged with zero or more labels.

• Proper&es. A property graph is a key-value-aGributed graph; the PGM allows ver9ces and edges to be enriched with data in the form of key-value pairs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 53

http://rictomm.me

Graph Query Languages

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 54

http://rictomm.me

How To Query Graph Databases!

• Although graphs can s0ll be (and some0mes s0ll are)
stored in rela0onal databases, the choice to use a graph
database for certain domains has significant benefits in
terms of querying.

• Where the emphasis shi?s from joining various tables to
specifying graph paBerns and naviga0onal paBerns
between nodes that may span arbitrary-length paths.

• A variety of graph database engines, graph data models,
and graph query languages have been released over the
past few years.

• Examples of Graph DBs: Neo4j, OrientDB, AllegroGraph.

• Graph data models: Property graphs, and edge labelled
graphs and many other varia0ons of them.

• Different modern query languages also come to the
scene such as Cypher, SPARQL, Gremlin and many more.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 55

http://rictomm.me

Graph Query Languages Core Features

• Features:

• Graph Pa/erns.

• Naviga6onal "Path" expressions.

• Aggrega6on

• Graph-to-Graph queries.

• Path unwinding.

• Standardiza6on:

• (SPARQL/SPARQL 1.1) --- Yes

• (Gremlin,G-
Core,Gremlin,GraphQl,Cypher)--- No

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 56

http://rictomm.me

Pa#ern Matching and Graph Naviga3on

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 57

http://rictomm.me

Graph Pa(ern Matching VS. Graph
Naviga5onal

• Graph query languages vary significantly in terms of
style, purpose, and expressivity.

• However, they share a common conceptual core:

• Graph pa'ern matching consists of a graph-
structured query that should be matched against
the graph database

• e.g. find all triangles of friendships in a social
network.

• Graph naviga0on is a more flexible querying
mechanisms that allows to navigate the topology of
the data.

• e.g find all friends-of-a-friend of some person in a
social network.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 58

http://rictomm.me

Graph Pa(ern Matching

For matching graph pa.erns we classified the main
proposals for the seman6cs into two categories:

• Homomorphism-based: matching the pa/ern
onto a graph with no restric4ons.

• Isomorphism-based: one of the following
restric4ons is imposed on a match:

• No-repeated-anything: no part of a graph is
mapped to two different variables.

• No-repeated-node: no node in the graph is
mapped to two different variables.

• No-repeated-edge: no edges in the graph is
mapped to two different variables.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 59

http://rictomm.me

Basic Graph pa+erns VS. Complex Graph
pa+erns

• Basic Graph Pa-erns (BGPs) are just
graph to match within the bigger graph
database. BGPs are the core of any
graph query language.

• Complex Graph Pa-erns (CGPs) extend
BGPs with some addiBonal query
features such as UNION, Difference,
ProjecBon, OpBonal (aka leK-outer-
join), and Filters.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 60

http://rictomm.me

CGPs Operators: Projec0on

• Like SELECT in SQL, is used also to select project on specific
outputs.

• Example: retrieve only the names of actors who starred together
in Unforgiven

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 61

http://rictomm.me

CGPs Operators: Union

• Intended to merge the result of two queries

• Let $Q1$ and $Q2$ be two graph pa<erns. The union of $Q1$
and $Q2$ is a complex graph pa<ern whose evaluaBon is
defined as the union of the evaluaBons.

• Example: find the movies in which Clint Eastwood acted or which he
directed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 62

http://rictomm.me

CGPs Operators: Difference

• The difference of $Q1$ and $Q2$ is also a complex graph
pa9ern whose evalua=on is defined as the set of matches in the
evalua=on of $Q1$ that do not belong to the evalua=on of
$Q2$.

• Logically a form of nega%on

• Example: * find the movies in which Clint Eastwood acted but
did not direct*.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 63

http://rictomm.me

CGPs Operators: Op.onal

• This feature is par.cularly useful when dealing with incomplete
informa.on, or in cases where the user may not know what
informa.on is available.

• Essen.ally a Le?-join

• Example: Find the informa.on rela.ng to the gender of users is
incomplete but may s.ll be interes.ng to the client, where available.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 64

http://rictomm.me

CGPs Operators: Filter

• Users may wish to restrict the matches of a cgp over a graph
database G based on some of the intermediate values returned
using, for example, inequali=es, or other types of expressions.

• Equivalent to rela=onal selec=on

• Example: find all male actors that acted in a Clint Eastwood's movie

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 65

http://rictomm.me

Or find all Leonardo Di Caprio's ex girlfriends that are were above 25 yo.

Hint: None

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 66

http://rictomm.me

Naviga&onal (Path) Queries in Graphs

Naviga&onal Path Queries

• Graph pa(erns allow for querying graph
databases in a bounded manner.

• Naviga<onal Path Queries provide a
more flexible querying mechanisms (yet
more expensive) that allow to navigate
the topology of the data.

• One example of such a query is to find
all friends-of-a-friend of some person in
a social network.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 67

http://rictomm.me

Path under Set Seman-cs

• Arbitrary paths: All paths are considered. More specifically, all paths in G that sa8sfy the constraints of P are included in P (G).

• Shortest paths: In this case, P (G) is defined in terms of shortest paths only, that is, paths of minimal length that sa8sfy the constraint specified by P.

• No-repeated-node paths: In this case, P (G) contains all matching paths where each node appears once in the path; such paths are commonly known as simple paths. This interpreta8on makes sense in some prac8cal scenarios; for example, when finding a
route of travel, it is oHen not desired to have routes that come to the same place more than once.

• No-repeated-edge paths: Under this seman8cs, P (G) contains all matching paths where each edge appears only once in the path. The Cypher query language of the Neo4j engine currently uses this seman8cs.

Output of Naviga-onal Queries

• As hinted at previously, a user may have different types of ques8ons with respect to the paths contained in the evalua8on P(G), such as:

• Does there exist any such path

• Is a par2cular path contained in P (G)

• What are the pairs of nodes connected by a path in P (G)

• What are (some of) the paths in P (G)

• We can Categorize such ques8ons by what they return as results:

• Boolean --- (True / False) values.

• Nodes --- are interested in the nodes connected by specific paths.

• Paths --- some or all of the full paths are returned from P (G). Example:Some of the Shortest Paths.

• Graphs --- is to offer a compact representa8on of the output as a graph

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 68

http://rictomm.me

Naviga&onal Graph Pa0erns (NGPs)

• Combining path queries with basic graph pa5erns (BGPs) gives rise to naviga<onal graph pa5erns (NGPs).

• In par<cular, this language allows to express that some edges in a graph pa5ern should be replaced by a path (sa<sfying certain
condi<ons) instead of a single edge.

• Example: Persons and movies are connected , while a person can also have an author edge connec<ng it to an ar<cle.

• In such a database we might be interested in finding people with finite Erdos-Bacon number, that is, people who are connected to Kevin
Bacon through co-stars rela<ons and are connected to Paul Erdos through co-authorship rela<ons.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 69

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 70

http://rictomm.me

Naviga&onal Graph Pa0erns (NGPs)

• Coming back to the social network, we might be interested in finding all friends of friends of Julie that liked a post with a tag that Julie follows. The naviga>onal
graph pa?ern in this Figure expresses this query over our social graph.

• Extending Naviga>onal Graph pa?erns with the complex operators of "Projec>on", "Op>onal", "Filter", "Union" and "Difference" give the rise to another new type
of them: (cngps).

• Example: Let's call these results the "recommended posts" for Julie. Now consider a copy of the same pa?ern to find the recommended posts for John.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 71

http://rictomm.me

Graph Query Languages In
Ac2on

• Cypher --- Property Graphs

• Gremlin--- Property Graphs

• GraphQL --- Edge-Labelled mul:
Graphs

• SPARQL --- Edge-Labelled Graphs RDF

• G-Core --- Property Graphs

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 72

http://rictomm.me

Cypher - The Neo4J DB Query Language

• Cypher is a declara/ve language for
querying property graphs that uses
"pa9erns" as its main building blocks.

• Cypher's declara/ve syntax provides a
familiar way to match pa9erns of nodes
and rela/onships in the graph.

• It is backed by several companies in the
database space and allows implementors
of databases and clients to freely benefit,
use from and contribute to the
development of the openCypher
language.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 73

http://rictomm.me

Graph Pa(erns in Cypher (Projec3on)

• Pa$erns are expressed syntac0cally following a "pictorial"
intui0on to encode nodes and edges with arrows between them.

• The following queries ask for co-stars of the "Unforgiven" movie.

MATCH (x:Person)-[:acts_in]->
 (m:Movie {title: "Unforgiven"})
 <-[:acts_in]-(y:Person)
RETURN x,y

MATCH (x:Person)-[:acts_in]->(m:Movie
 {title: "Unforgiven"})
(y:Person)-[:acts_in]->(m)
RETURN x,y

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 74

In this case, we would also get
the matches that send both x
and y to the node of Clint
Eastwood (and likewise to the
node of Anna Levine).

http://rictomm.me

Comple Graph Pa-erns in Cypher: Union

MATCH (:Person
 {name:"Clint Eastwood"})-[:acts_in]->(m:Movie)
RETURN m.title
UNION ALL
MATCH (:Person
 {name:"Clint Eastwood"})-[:directs]->(m:Movie)
RETURN m.title

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 75

http://rictomm.me

Comple Graph Pa-erns in Cypher: Difference

MATCH (p:Person)-[:acts_in]->(m:Movie
 {title: "Unforgiven"})
WHERE NOT (p)-[:direct]->(m)
RETURN m.title

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 76

http://rictomm.me

Comple Graph Pa-erns in Cypher: Op4onal

MATCH (p:Person)-[:acts_in]->(m:Movie)
OPTIONAL MATCH (p)-[x]->(m)
WHERE type(x) <> "acts_in"
RETURN p.name, m.title, type(x)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 77

http://rictomm.me

Naviga&onal Queries in Cypher

• While not suppor/ng full regular expressions, Cypher s/ll allows transi/ve
closure over a single edge label in a property graph.

• Since it is designed to run over property graphs, Cypher also allows the star
to be applied to an edge property/value pair.

• Example: compute the friend-of-a-friend rela/on. The following query
selects pairs of nodes that are linked by a path completely labelled by
knows. To do this, it applies the star operator * over the label knows .

MATCH (x:Person)-[:knows*]->(y:Person)
RETURN x,y

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 78

http://rictomm.me

Naviga&onal Queries in Cypher

• Example 2. If we wanted to find friends of friends of Julie and return only the shortest witnessing path.
This will return a single shortest witnessing path. If we wanted to return all shortest paths, then we
could replace "shortestPath" with "allShortestPaths".

MATCH (x:Person {firstname:"Julie"}),
p = shortestPath((x)-[:knows*]->(y:Person))
RETURN p

• Example 3. Coming back to the social network, if we want to find all friends of-friends of Julie that liked
a post with a tag that Julie follows, we can use the following Cypher query:

MATCH (x:Person {firstname:"Julie"})-[:knows*]->(y:Person))
MATCH (y)-[:likes]->()->[:hasTag]->(z)
MATCH (z)-[:hasFollower]->(x)
RETURN y

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 79

http://rictomm.me

Naviga&onal Queries Cypher

• Another interes,ng feature available in Cypher is the ability to return paths.

• Example 4. If we wanted to return all friends of friends of Julie in the graph, together with a path witnessing the
friendship, then we can use:

MATCH p = (:Person name:"Julie")-[:knows*]->(x:Person)
RETURN x,p

• Result will be:

x p

Node[2] [Node[1],:knows[1],Node[2]]

Node[1] [Node[1],:knows[1],Node[2],:knows[2],Node[1]]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 80

http://rictomm.me

SPARQL - The RDF Query Language

• SPARQL is the standard query language of RDF
and become official W3C recommendaBon
since 2003.

• SPARQL is a paGern matching query language
over the RDF graph. SPARQL queries contain a
set of triple paGerns (TPs), also known as Basic
Graph PaGerns (BGPs).

• Triple paGerns are similar to RDF triple paGerns,
but each of the subject, predicate or object may
be unbounded variable preceded by ("?") prefix.

• SPARQL mission is to bind those variable by
matching the query paGerns to triples in the
RDF dataset.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 81

http://rictomm.me

RDF Graphs

• RDF graphs are a special type of edge-
labelled graph.

• The basic bloc is a triple <subject>
<predicate> <object>

• Nodes and edges are iden;fied using
URIs

• Obejcts can be literals (Numbers,
strings)

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 82

http://rictomm.me

Anathomy of a SPARQL Query

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 83

http://rictomm.me

SPARQL Graph Pa-erns

Let us take a closer look at how graph pa1erns are
applied in three prac5cal query languages:
SPARQL, Cypher, and Gremlin.

• SPARQL: Projec/on

• The following SPARQL query represents a
complex graph paAern that combines the
basic graph paAern with a projec/on that asks
to only return the co-stars and not the movie
iden/fier.

PREFIX : <httpL//example.org#>
SELECT ?x ?y
WHERE {
 ?x :acts_in ?y ;
 :type :Person .
 ?z :acts_in ?y ;
 :type :Person .
 ?y :title "Unforgiven" ;
 :type :Movie .
 FILTER(?x!=?y)
}

?x ?y

:Clint_Eastwood :Anna_Levine

:Anna_Levine :Clint_Eastwood

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 84

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 85

http://rictomm.me

Complex Graph Pa.erns in SPARQL (Union)

• This example of a union to
find movies that Clint
Eastwood has acted or
directed in.

SELECT ?x
WHERE {
 {:Clint_Eastwood :acts_in ?x . }
 UNION
 {:Clint_Eastwood :directs ?x . }
}

?x

:Unforgiven

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 86

http://rictomm.me

Complex Graph Pa.erns in SPARQL (Difference)

• SPARQL Difference We
could use difference to ask
for people who acted in the
movie Unforgiven but who
did not (also) direct.

SELECT ?x
WHERE {
 {?x :acts_in :Unforgiven . }
 MINUS
 {?x :directs :Unforgiven . }
}

?x

:Anna_Levin

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 87

http://rictomm.me

Complex Graph Pa.erns in SPARQL (OPTIONAL)

• SPARQL: Op,onal Using
op,onal, we could ask for
movies that actors have
appeared in, and any other
par,cipa,on they had with
the movie besides ac,ng in
it

SELECT ?x ?y ?z
WHERE {
 {?x :acts_in ?y . }
 OPTIONAL
 {?x ?z ?y .
 FILTER(?x != :acts_in) }
}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 88

http://rictomm.me

Naviga&onal Queries in Ac&on: SPARQL

• Since Version 1.1 , SPARQL permits the use of property paths.

• SPARQL Property Paths are an extended form of regular
expression.

• As a consequence, we can express any path query using SPARQL
1.1.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 89

http://rictomm.me

Example 1

• Consider the following
SPARQL query to find all
pairs of actors who have
finite collabora@on distance,
we can use

SELECT ?x ?y
WHERE { ?x (:acts_in/acts_in*) ?y }

Example 2

• Consider the following
SPARQL query with a
negated property-set.

• This query will
match :Unforgiven (the IRI)
and "Unforgiven" (the Htle
string) for ?y.

SELECT ?y
WHERE { :Clint_Eastwood (!{rdf:type,:directs})* ?y }

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 90

http://rictomm.me

Naviga&onal Queries in SPARQL

• Similarly, SPARQL can also express naviga9onal graph pa;erns (ngps).

• Example: find all people with a finite Erdos-Bacon number can be
expressed in SPARQL as in the query below, which is a conjunc9on of
two RPQs, where the symbol "." denotes conjunc9on.

SELECT ?x
WHERE {
 ?x (:acts_in/^:acts_in)* :Kevin_Bacon .
 ?x (:author/^:author)* :Paul_Erdos .
}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 91

http://rictomm.me

Naviga&onal Queries in SPARQL

• Likewise, SPARQL can express complex naviga:onal graph pa<erns (cngps).

• Example. We can express an RDF version of the query for the posts
recommended to Julie but not to John as follows:

SELECT ?x ?y ?z
WHERE {
 {:Julie :knows+/:likes ?x ;
 :hasTag/:hasFollower :Julie . }
 MINUS
 {:John :knows+/:likes ?x ;
 :hasTag/:hasFollower :John . }
}

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 92

http://rictomm.me

Other Popular Query Languages.

• G-Core117

• Community effort between industry and academia to shape and standardize the future of graph query
languages.

• G-Core Features:

• Composability: Graphs are inputs and outputs of the queries. Queries can be composed. The fact that G-
CORE is closed on the PPG data model means that subqueries and views are possible.

• Paths are First Class-CiIzens: Paths can increase the expressivity of the language. G-Core extends graphs
models with paths (PPG). Can have labels and prosperiIes.

• Capture a core: Standards are difficult and poliIcs, Take the successful funcIonaliIes with tractable
evaluaIon of current languages as a base to develop

117 Angles, Renzo, et al. G-CORE: A core for future graph query languages. Proceedings of the 2018 Interna<onal
Conference on Management of Data. ACM, 2018.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 93

http://rictomm.me

Other Popular Query Languages.

• GraphQL also removes redundancy, Another restric9on is type restric9ons.

• The following Figure (leA) shows an example GraphQL query over the domain (F, A, T) and the response is in the right.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 94

http://rictomm.me

Graph Query Languages Features Comparison

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 95

http://rictomm.me

