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What is a Graph?

Informally a graph is a set of nodes joined by a set of lines or arrows.
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Graph

G is an ordered triple 
 - V is a set of nodes, points, or ver3ces.
 - E is a set, whose elements are known as edges or lines.
 -  is a func3on
 - maps each element of E
 - to an unordered pair of ver3ces in V.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 3

http://rictomm.me


Vertexes and Edges

• A Vertex is a Basic Element

• Drawn as a node or a dot .

• The Vertex set of a graph *G is usually denoted by V

• An edge is set of two elements ^2cb8a1

• Drawn as a line connecBng two verBces, called end verBces, or 
endpoints.

• The edge set of G is usually denoted by E(G), or E.
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Example

V:={1,2,3,4,5,6}

E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}
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Directed Graph (digraph)

Edges have direc-ons, i.e. an edge is an 
ordered pair of nodes
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Weighted graphs

are graphs for which each edge has an 
associated weight, usually given by a 
weight func7on 

 :  .
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Paths

A path is a sequence of ver/ces such that 
there is an edge from each vertex to its 

successor.

• A path is simple if each vertex is dis1nct.

• If there is path p from u to v then we 
say v is reachable from u via p .

Example: 

 Simple path from 1 to 5= [ 1, 2, 4, 5 ]

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 8

http://rictomm.me


Cycle

• A path from a vertex to itself is called a cycle .

• A graph is called cyclic if it contains a cycle;

• otherwise it is called acyclic
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Connec&vity

• A graph is connected if

• you can get from any node to any other by following a 
sequence of edges OR

• any two nodes are connected by a path.

• A directed graph is strongly connected if there is a directed path 
from any node to any other node.
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Sparsity/Density

A graph is sparse if 

A graph is dense if 
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Degree

Number of edges incident on a node

E.g., the degree of 5 is 3.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 12

http://rictomm.me


Degree (Directed Graphs)

In degree: Number of edges entering

Out degree: Number of edges leaving

Degree =indegree+outdegree
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Graph Types
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Bipar&te graph

• V can be par**oned into 2 sets  and 
 such that  implies

• either  and 

• or  and 
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Complete Graph

• Denoted 

• Every pair of ver1ces are adjacent

• Has n(n-1) edges
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Planar Graph

• Can be drawn on a plane such that no 
two edges intersect

•  is the largest complete graph that is 
planar
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Tree

Connected Acyclic Graph

Two nodes have exactly one path between 
them
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Hypergraph

• Generaliza*on of a graph,

• edges can connect any number of ver*ces.

• Formally, an hypergraph is a pair (X,E) where

• X is a set of elements, called nodes or ver*ces, and

• E is a set of subsets of X, called hyperedges.

• Hyperedges are arbitrary sets of nodes,

• contain an arbitrary number of nodes.
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Subgraph

• Vertex and edge sets are subsets of those of G

• a supergraph of a graph G is a graph that contains G as a 
subgraph.
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Spanning subgraph

• Subgraph G has the same vertex set as H.

• Possibly not all the edges

• "G spans H".
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Graph ADT

• In computer science, a graph is an abstract data type (ADT)

• that consists of

• a set of nodes and

• a set of edges

• establish rela=onships (connec=ons) between the nodes.

• The graph ADT follows directly from the graph concept from 
mathema=cs.
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Representa)on (Matrix)

• Incidence Matrix

• E x V

• [edge, vertex] contains the edge's data

• Adjacency Matrix

• V x V

• Boolean values (adjacent or not)

• Or Edge Weights
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Representa)on (List)
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Graph Algorithms
• Shortest Path

• Single Source

• All pairs (Ex. Floyd Warshall)

• Network Flow

• Matching

• BiparBte

• Weighted

• Topological Ordering

• Strongly Connected

• Biconnected Component / Ar1cula1on Point

• Bridge

• Graph Coloring

• Euler Tour

• Hamiltonian Tour

• Clique

• Isomorphism

• Edge Cover

• Vertex Cover

• Visibility
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Graph Technologies
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Graph Databases
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Back to One Machine

• Graph Databases are tailored for OLTP workloads.

• Typically, you are interested in selec>ng the subset of your graph 
based on a condi>on and then operate on that.

• Most of them work in a centralized fashion
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The Case of Graph OLAP

• OLAP queries over the en2re graph will not be so efficient (why?)

• Graph OLAP algorithms are oAe itera&ve, and need to process 
the whole graph. 

• Hard to Scale out because graph are hard to par22on

• If you're interested join our Spring courses LTAT.02.003 and 
LTAT.02.010
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Graph DBs VS. RDBMSs

• RDBs are well fi-ed to find generice 
queries, thanks to the internal structure 
of the tables. 

• Aggrega>ons over a complete dataset 
are "easy".

• However, Rela>onal databases struggle 
with highly connected domains.
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Performance

In rela(onal databases, the performance 
of join-intensive queries deteriorates as 
the dataset gets bigger. 

On the other hand, graph database 
performance tends to remain rela5vely 
constant, even as the dataset grows.
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(Nope, indexes)
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Clarke's Third Law: Any sufficiently advanced 
technology is indis4nguishable from magic.

Agility

Despite their names though, rela2onal 
databases are less suited for exploring 
rela2onships. Thus, the complexity is pushed 
on the query language.

In graph databses, rela0onships are first-class 
moreover, they have no schema. Thus, API 
and query language are much simpler and 
agile.
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Flexibility

Changing schemas in Rela.onal Databases 
may break queries and store procedures or 
require to change the integrity constraints.

Graphs are naturally addi0ve, we can add 
new rela0onships or nodes without 
disturbing exis0ng queries and applica0on 
func0onality.
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Graph DBs VS. NoSQL

• Are Rela)onalDB NoSQL?

• In principles, yes. However they do not target OLAP...
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Nosql also Lacks Rela-onships

• Most NOSQL databases whether key-
value, document, or column oriented 
store sets of disconnected documents/
values/columns.

• This makes it difficult to use them for 
connected data and graphs.

• One well-known strategy for adding 
relaEonships to such stores is to embed 
an aggregate's idenEfier inside the field 
belonging to another aggregate.
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Nosql also Lacks Rela-onships

• We can join aggregates at the applica-on level

• Seeing a reference to order: 1234 in the record beginning user: 
Alice, we infer a connec-on between user: Alice and order: 1234.

• Because there are no iden-fiers that "point" backward (the foreign 
aggregate "links" are not reflexive.

• How to answer: Who customers that bought a par0cular product? 

•  Aggregates quickly becomes prohibi-vely expensive.
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Graph DBs embrace Rela0onships
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Popularity of Graph DBs
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Which one to choose?!111

111 Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O'Reilly Media, Inc.
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Graph Storage and Processing

• Na#ve Graph Storage benefits traversal performance at the 
expense of making some queries that don't use traversals 
difficult or memory intensive.

• Non-Na#ve graph storage, e.g., usuing a rela?onal backend, is 
purpose-built stack and can be engineered for performance and 
scalability. 
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Na#ve Graph Processing

A graph database has na.ve processing capabili.es if it uses index-
free adjacency. 

A node directly references its adjacent nodes, ac2ng as a micro-
index for all nearby nodes.

With index-free adjacency, bidirec3onal joins are effec3vely 
precomputed and stored in the database as rela3onships1140.

1140 It is cheaper and more efficient than doing the same task with indexes, because query =mes are propor=onal to 
the amount of the graph searched.
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Storage

Doubly Linked Lists in the Rela3onship Store
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Non-na&ve processing

• A nonna've graph database engine uses 
(global) indexes to link nodes together, 

• Example:

• To find Ali- ce’s friends we have first 
to perform an index lookup, at cost 
O(log n).

• If we wanted to find out who is 
friends with Alice, we would have to 
one lookup for each node that is 
poten'ally friends with Alice. This 
makes the cost O(m log n).
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Neo4J Graph DB112

• It supports ACID transac0ons

• It implements a Property Graph Model efficiently 
down to the storage level.

• It is useful for single server deployments to query 
over medium sized graphs due to using memory 
caching and compact storage for the graph.

• Its implementa0on in Java also makes it widely 
usable.

• It provides master-worker clustering with cache 
sharding for enterprise deployment.

• It uses Cypher as a declara0ve query language.

112 url
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AllegroGraph Seman/c Graph DB114

• AllegroGraph is a graph database and applica4on 
framework for building Seman4c Web applica4ons.

• It can store data and meta-data as triples.

• It can query these triples through various query 
APIs like SPARQL (the standard W3C query 
language).

• It supports RDFS++ as well as Prolog reasoning 
with its built-in reasoner.

• AllegroGraph includes support for Federa4on, 
Social Network Analysis, Geospa4al capabili4es 
and Temporal reasoning.

114 h%ps://franz.com/agraph/allegrograph/
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Graph Data Models

• Two Popular Graph Data Models:

• Edge-Labelled Graphs 

• Property A<ributed Graphs
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Property Graphs Vs. Edge-Labelled Graphs

• Edge-Labelled Graphs are widely adopted in prac8ce. E.g. Resource 
Descrip8on Framework (RDF) (Figure in the previous slide).

• However, it is oEen cumbersome to add informa8on about the edges to 
an edge-labelled graph.

• For example, if we wished to add the source of informa8on, for example, 
that the acts-in rela8ons were sourced from the web-site IMDb.

• Adding new types of informa8on to edges in an edge-labelled graph may 
thus require a major change to the graph's structure, entailing a significant 
cost.
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Property Graph Example

Varia%ons of the Property Graph Data Model (PGM)

• Direc&on. A property graph is a directed graph; the PGM defines edges as ordered pairs of ver9ces.

• Mul&-graph. A property graph is a mul9-graph; the PGM allows mul9ple edges between a given pair of ver9ces.

• Simple graphs (in contrast to mul9-graphs) addi9onally require to be injec9ve (one-to-one).

• Labels. A property graph is a mul9-labeled graph; the PGM allows ver9ces and edges to be tagged with zero or more labels.

• Proper&es. A property graph is a key-value-aGributed graph; the PGM allows ver9ces and edges to be enriched with data in the form of key-value pairs.
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Graph Query Languages
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How To Query Graph Databases!

• Although graphs can s0ll be (and some0mes s0ll are) 
stored in rela0onal databases, the choice to use a graph 
database for certain domains has significant benefits in 
terms of querying.

• Where the emphasis shi?s from joining various tables to 
specifying graph paBerns and naviga0onal paBerns 
between nodes that may span arbitrary-length paths.

• A variety of graph database engines, graph data models, 
and graph query languages have been released over the 
past few years.

• Examples of Graph DBs: Neo4j, OrientDB, AllegroGraph.

• Graph data models: Property graphs, and edge labelled 
graphs and many other varia0ons of them.

• Different modern query languages also come to the 
scene such as Cypher, SPARQL, Gremlin and many more.
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Graph Query Languages Core Features

• Features:

• Graph Pa/erns.

• Naviga6onal "Path" expressions.

• Aggrega6on

• Graph-to-Graph queries.

• Path unwinding.

• Standardiza6on:

• (SPARQL/SPARQL 1.1) --- Yes

• (Gremlin,G-
Core,Gremlin,GraphQl,Cypher)--- No
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Pa#ern Matching and Graph Naviga3on
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Graph Pa(ern Matching VS. Graph 
Naviga5onal

• Graph query languages vary significantly in terms of 
style, purpose, and expressivity.

• However, they share a common conceptual core:

• Graph pa'ern matching consists of a graph-
structured query that should be matched against 
the graph database

• e.g. find all triangles of friendships in a social 
network.

• Graph naviga0on is a more flexible querying 
mechanisms that allows to navigate the topology of 
the data.

• e.g find all friends-of-a-friend of some person in a 
social network.
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Graph Pa(ern Matching

For matching graph pa.erns we classified the main 
proposals for the seman6cs into two categories:

• Homomorphism-based: matching the pa/ern 
onto a graph with no restric4ons.

• Isomorphism-based: one of the following 
restric4ons is imposed on a match:

• No-repeated-anything: no part of a graph is 
mapped to two different variables.

• No-repeated-node: no node in the graph is 
mapped to two different variables.

• No-repeated-edge: no edges in the graph is 
mapped to two different variables.
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Basic Graph pa+erns VS. Complex Graph 
pa+erns

• Basic Graph Pa-erns (BGPs) are just 
graph to match within the bigger graph 
database. BGPs are the core of any 
graph query language.

• Complex Graph Pa-erns (CGPs) extend 
BGPs with some addiBonal query 
features such as UNION, Difference, 
ProjecBon, OpBonal (aka leK-outer-
join), and Filters.
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CGPs Operators: Projec0on

• Like SELECT in SQL, is used also to select project on specific 
outputs.

• Example: retrieve only the names of actors who starred together 
in Unforgiven
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CGPs Operators: Union

• Intended to merge the result of two queries

• Let $Q1$ and $Q2$ be two graph pa<erns. The union of $Q1$ 
and $Q2$ is a complex graph pa<ern whose evaluaBon is 
defined as the union of the evaluaBons.

• Example: find the movies in which Clint Eastwood acted or which he 
directed.
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CGPs Operators: Difference

• The difference of $Q1$ and $Q2$ is also a complex graph 
pa9ern whose evalua=on is defined as the set of matches in the 
evalua=on of $Q1$ that do not belong to the evalua=on of 
$Q2$.

• Logically a form of nega%on 

• Example: * find the movies in which Clint Eastwood acted but 
did not direct*.
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CGPs Operators: Op.onal

• This feature is par.cularly useful when dealing with incomplete 
informa.on, or in cases where the user may not know what 
informa.on is available.

• Essen.ally a Le?-join

• Example: Find the informa.on rela.ng to the gender of users is 
incomplete but may s.ll be interes.ng to the client, where available.
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CGPs Operators: Filter

• Users may wish to restrict the matches of a cgp over a graph 
database G based on some of the intermediate values returned 
using, for example, inequali=es, or other types of expressions.

• Equivalent to rela=onal selec=on

• Example: find all male actors that acted in a Clint Eastwood's movie
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Or find all Leonardo Di Caprio's ex girlfriends that are were above 25 yo.

Hint: None
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Naviga&onal (Path) Queries in Graphs

Naviga&onal Path Queries

• Graph pa(erns allow for querying graph 
databases in a bounded manner.

•  Naviga<onal Path Queries provide a 
more flexible querying mechanisms (yet 
more expensive) that allow to navigate 
the topology of the data.

• One example of such a query is to find 
all friends-of-a-friend of some person in 
a social network.
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Path under Set Seman-cs

• Arbitrary paths: All paths are considered. More specifically, all paths in G that sa8sfy the constraints of P are included in P (G).

• Shortest paths: In this case, P (G) is defined in terms of shortest paths only, that is, paths of minimal length that sa8sfy the constraint specified by P.

• No-repeated-node paths: In this case, P (G) contains all matching paths where each node appears once in the path; such paths are commonly known as simple paths. This interpreta8on makes sense in some prac8cal scenarios; for example, when finding a 
route of travel, it is oHen not desired to have routes that come to the same place more than once.

• No-repeated-edge paths: Under this seman8cs, P (G) contains all matching paths where each edge appears only once in the path. The Cypher query language of the Neo4j engine currently uses this seman8cs.

Output of Naviga-onal Queries

• As hinted at previously, a user may have different types of ques8ons with respect to the paths contained in the evalua8on P(G), such as:

• Does there exist any such path

• Is a par2cular path contained in P (G )

• What are the pairs of nodes connected by a path in P (G)

• What are (some of) the paths in P (G)

• We can Categorize such ques8ons by what they return as results:

• Boolean --- (True / False) values.

• Nodes --- are interested in the nodes connected by specific paths.

• Paths --- some or all of the full paths are returned from P (G). Example:Some of the Shortest Paths.

• Graphs --- is to offer a compact representa8on of the output as a graph
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Naviga&onal Graph Pa0erns (NGPs)

• Combining path queries with basic graph pa5erns (BGPs) gives rise to naviga<onal graph pa5erns (NGPs).

• In par<cular, this language allows to express that some edges in a graph pa5ern should be replaced by a path (sa<sfying certain 
condi<ons) instead of a single edge.

• Example: Persons and movies are connected , while a person can also have an author edge connec<ng it to an ar<cle.

• In such a database we might be interested in finding people with finite Erdos-Bacon number, that is, people who are connected to Kevin 
Bacon through co-stars rela<ons and are connected to Paul Erdos through co-authorship rela<ons.
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Naviga&onal Graph Pa0erns (NGPs)

• Coming back to the social network, we might be interested in finding all friends of friends of Julie that liked a post with a tag that Julie follows. The naviga>onal 
graph pa?ern in this Figure expresses this query over our social graph.

• Extending Naviga>onal Graph pa?erns with the complex operators of "Projec>on", "Op>onal", "Filter", "Union" and "Difference" give the rise to another new type 
of them: (cngps).

• Example: Let's call these results the "recommended posts" for Julie. Now consider a copy of the same pa?ern to find the recommended posts for John.
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Graph Query Languages In 
Ac2on

• Cypher --- Property Graphs

• Gremlin--- Property Graphs

• GraphQL --- Edge-Labelled mul: 
Graphs

• SPARQL --- Edge-Labelled Graphs RDF

• G-Core --- Property Graphs
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Cypher - The Neo4J DB Query Language

• Cypher is a declara/ve language for 
querying property graphs that uses 
"pa9erns" as its main building blocks.

• Cypher's declara/ve syntax provides a 
familiar way to match pa9erns of nodes 
and rela/onships in the graph.

• It is backed by several companies in the 
database space and allows implementors 
of databases and clients to freely benefit, 
use from and contribute to the 
development of the openCypher 
language.
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Graph Pa(erns in Cypher (Projec3on)

• Pa$erns are expressed syntac0cally following a "pictorial" 
intui0on to encode nodes and edges with arrows between them.

• The following queries ask for co-stars of the "Unforgiven" movie. 

MATCH (x:Person)-[:acts_in]->
    (m:Movie {title: "Unforgiven"})
        <-[:acts_in]-(y:Person)
RETURN x,y

MATCH (x:Person)-[:acts_in]->(m:Movie 
    {title: "Unforgiven"})
(y:Person)-[:acts_in]->(m) 
RETURN x,y
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Comple Graph Pa-erns in Cypher: Union

MATCH (:Person 
    {name:"Clint Eastwood"})-[:acts_in]->(m:Movie)
RETURN m.title
UNION ALL 
MATCH (:Person 
    {name:"Clint Eastwood"})-[:directs]->(m:Movie)
RETURN m.title
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Comple Graph Pa-erns in Cypher: Difference

MATCH (p:Person)-[:acts_in]->(m:Movie 
    {title: "Unforgiven"})
WHERE NOT (p)-[:direct]->(m)
RETURN m.title
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Comple Graph Pa-erns in Cypher: Op4onal

MATCH (p:Person)-[:acts_in]->(m:Movie)
OPTIONAL MATCH (p)-[x]->(m)
WHERE type(x) <> "acts_in"
RETURN p.name, m.title, type(x)
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Naviga&onal Queries in Cypher

• While not suppor/ng full regular expressions, Cypher s/ll allows transi/ve 
closure over a single edge label in a property graph.

• Since it is designed to run over property graphs, Cypher also allows the star 
to be applied to an edge property/value pair.

• Example: compute the friend-of-a-friend rela/on. The following query 
selects pairs of nodes that are linked by a path completely labelled by 
knows. To do this, it applies the star operator * over the label knows .

MATCH (x:Person)-[:knows*]->(y:Person)
RETURN x,y
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Naviga&onal Queries in Cypher

• Example 2. If we wanted to find friends of friends of Julie and return only the shortest witnessing path. 
This will return a single shortest witnessing path. If we wanted to return all shortest paths, then we 
could replace "shortestPath" with "allShortestPaths".

MATCH (x:Person {firstname:"Julie"}),
p = shortestPath( (x)-[:knows*]->(y:Person))
RETURN p

• Example 3. Coming back to the social network, if we want to find all friends of-friends of Julie that liked 
a post with a tag that Julie follows, we can use the following Cypher query:

MATCH (x:Person {firstname:"Julie"})-[:knows*]->(y:Person))
MATCH (y)-[:likes]->()->[:hasTag]->(z)
MATCH (z)-[:hasFollower]->(x)
RETURN y
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Naviga&onal Queries Cypher

• Another interes,ng feature available in Cypher is the ability to return paths.

• Example 4. If we wanted to return all friends of friends of Julie in the graph, together with a path witnessing the 
friendship, then we can use:

MATCH p = (:Person name:"Julie")-[:knows*]->(x:Person)
RETURN x,p

• Result will be:

x p

Node[2] [Node[1],:knows[1],Node[2]]

Node[1] [Node[1],:knows[1],Node[2],:knows[2],Node[1]]
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SPARQL - The RDF Query Language

• SPARQL is the standard query language of RDF 
and become official W3C recommendaBon 
since 2003.

• SPARQL is a paGern matching query language 
over the RDF graph. SPARQL queries contain a 
set of triple paGerns (TPs), also known as Basic 
Graph PaGerns (BGPs).

• Triple paGerns are similar to RDF triple paGerns, 
but each of the subject, predicate or object may 
be unbounded variable preceded by ("?") prefix.

• SPARQL mission is to bind those variable by 
matching the query paGerns to triples in the 
RDF dataset.
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RDF Graphs

• RDF graphs are a special type of edge-
labelled graph.

• The basic bloc is a triple <subject> 
<predicate> <object>

• Nodes and edges are iden;fied using 
URIs

• Obejcts can be literals (Numbers, 
strings)
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Anathomy of a SPARQL Query
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SPARQL Graph Pa-erns

Let us take a closer look at how graph pa1erns are 
applied in three prac5cal query languages: 
SPARQL, Cypher, and Gremlin.

• SPARQL: Projec/on

• The following SPARQL query represents a 
complex graph paAern that combines the 
basic graph paAern with a projec/on that asks 
to only return the co-stars and not the movie 
iden/fier.

PREFIX : <httpL//example.org#>
SELECT ?x ?y
WHERE { 
    ?x :acts_in ?y ; 
       :type :Person .
    ?z :acts_in ?y ; 
       :type :Person .
    ?y :title "Unforgiven" ; 
       :type :Movie .
    FILTER(?x!=?y)
}

?x ?y

:Clint_Eastwood :Anna_Levine

:Anna_Levine :Clint_Eastwood

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 84

http://rictomm.me


Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 85

http://rictomm.me


Complex Graph Pa.erns in SPARQL (Union)

• This example of a union to 
find movies that Clint 
Eastwood has acted or 
directed in. 

SELECT ?x
WHERE { 
    {:Clint_Eastwood :acts_in ?x . }
    UNION
    {:Clint_Eastwood :directs ?x . }
}

?x

:Unforgiven
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Complex Graph Pa.erns in SPARQL (Difference)

• SPARQL Difference We 
could use difference to ask 
for people who acted in the 
movie Unforgiven but who 
did not (also) direct.

SELECT ?x
WHERE { 
    {?x :acts_in :Unforgiven . }
    MINUS
    {?x :directs :Unforgiven . }
}

?x

:Anna_Levin
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Complex Graph Pa.erns in SPARQL (OPTIONAL)

• SPARQL: Op,onal Using 
op,onal, we could ask for 
movies that actors have 
appeared in, and any other 
par,cipa,on they had with 
the movie besides ac,ng in 
it

SELECT ?x ?y ?z
WHERE { 
    {?x :acts_in ?y . }
    OPTIONAL
    {?x ?z ?y . 
        FILTER(?x != :acts_in) }
}
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Naviga&onal Queries in Ac&on: SPARQL

• Since Version 1.1 , SPARQL permits the use of property paths.

• SPARQL Property Paths are an extended form of regular 
expression.

• As a consequence, we can express any path query using SPARQL 
1.1.
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Example 1

• Consider the following 
SPARQL query to find all 
pairs of actors who have 
finite collabora@on distance, 
we can use 

SELECT ?x ?y
WHERE { ?x (:acts_in/acts_in*) ?y }

Example 2

• Consider the following 
SPARQL query with a 
negated property-set. 

• This query will 
match :Unforgiven (the IRI) 
and "Unforgiven" (the Htle 
string) for ?y.

SELECT ?y
WHERE { :Clint_Eastwood (!{rdf:type,:directs})* ?y }
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Naviga&onal Queries in SPARQL

• Similarly, SPARQL can also express naviga9onal graph pa;erns (ngps).

• Example: find all people with a finite Erdos-Bacon number can be 
expressed in SPARQL as in the query below, which is a conjunc9on of 
two RPQs, where the symbol "." denotes conjunc9on.

SELECT ?x
WHERE { 
    ?x (:acts_in/^:acts_in)* :Kevin_Bacon .
    ?x (:author/^:author)* :Paul_Erdos .
}
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Naviga&onal Queries in SPARQL

• Likewise, SPARQL can express complex naviga:onal graph pa<erns (cngps).

• Example. We can express an RDF version of the query for the posts 
recommended to Julie but not to John as follows:

SELECT ?x ?y ?z
WHERE { 
    {:Julie :knows+/:likes ?x ;
            :hasTag/:hasFollower :Julie . }
    MINUS
    {:John :knows+/:likes ?x ;
            :hasTag/:hasFollower :John . }
}
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Other Popular Query Languages.

• G-Core117

• Community effort between industry and academia to shape and standardize the future of graph query 
languages.

• G-Core Features:

• Composability: Graphs are inputs and outputs of the queries. Queries can be composed. The fact that G-
CORE is closed on the PPG data model means that subqueries and views are possible.

• Paths are First Class-CiIzens: Paths can increase the expressivity of the language. G-Core extends graphs 
models with paths (PPG). Can have labels and prosperiIes.

• Capture a core: Standards are difficult and poliIcs, Take the successful funcIonaliIes with tractable 
evaluaIon of current languages as a base to develop

117 Angles, Renzo, et al. G-CORE: A core for future graph query languages. Proceedings of the 2018 Interna<onal 
Conference on Management of Data. ACM, 2018.
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Other Popular Query Languages.

• GraphQL also removes redundancy, Another restric9on is type restric9ons.

• The following Figure (leA) shows an example GraphQL query over the domain (F, A, T) and the response is in the right.
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Graph Query Languages Features Comparison
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