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What is a Graph?

Informally a graph is a set of nodes joined by a set of lines or arrows.
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Graph

G is an ordered triple G := (V, E, f)

-V is a set of nodes, points, or vertices.

- E is a set, whose elements are known as edges or lines.
- fis a function

- maps each element of E

- to an unordered pair of vertices in V.
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Vertexes and Edges

 AVertex is a Basic Element

e Drawn as a node or a dot .

e The Vertex set of a graph *G is usually denoted by V
e An edge is set of two elements *2cb8al

e Drawn as a line connecting two vertices, called end vertices, or
endpoints.

e The edge set of G is usually denoted by E(G), or E.
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Example

V:={1,2,3,4,5,6}
E:={{1,2},{1,5},12,3},12,5},13,4},{14,5},14,6}}
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Directed Graph (digraph)

Edges have directions, i.e. an edge is an
ordered pair of nodes
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Weighted graphs

are graphs for which each edge has an
associated weight, usually given by a
weight function

fo:E— R.
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Paths

A path is a sequence of vertices such that
there is an edge from each vertex to its
SUCCESSOT.

e A path is simple if each vertex is distinct.

e |f there is path p from u to v then we
say v is reachable from u viap .

Example:

Simple path from1to 5=[1,2,4,5]
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Cycle

A path from a vertex to itself is called a cycle .
A graph is called cyclic if it contains a cycle;

e otherwise it is called acyclic
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Connectivity

e A graph is connected if

e you can get from any node to any other by following a
sequence of edges OR

e any two nodes are connected by a path.

o A directed graph is strongly connected if there is a directed path
from any node to any other node.
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Sparsity/Density
A graph is sparse if |E| ~ |V

A graph is dense if |E| ~ |V?
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Degree

Number of edges incident on a node

E.g., the degree of 5 is 3.
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\

2
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Degree (Directed Graphs)

In degree: Number of edges entering
Out degree: Number of edges leaving

Degree =indegree+outdegree
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Graph Types
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Bipartite graph

e V can be partitioned into 2 sets V; and
V5 such that (u,v) € E implies
e eitheru € V; andv € V4

e orveViandu € V5
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Complete Graph

e Denoted K,
e Every pair of vertices are adjacent

e Has n(n-1) edges
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Planar Graph

e Can be drawn on a plane such that no
two edges intersect

e K, isthe largest complete graph that is
planar
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Tree @
Connected Acyclic Graph
Two nodes have exactly one path between /

them @ @ @ @
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Hypergraph

e Generalization of a graph,
e edges can connect any number of vertices.

e Formally, an hypergraph is a pair (X,E) where
e Xis aset of elements, called nodes or vertices, and
e E is asetof subsets of X, called hyperedges.

e Hyperedges are arbitrary sets of nodes,

e contain an arbitrary number of nodes.
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Subgraph

e Vertex and edge sets are subsets of those of G

e a supergraph of a graph G is a graph that contains G as a
subgraph.
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Spanning subgraph

e Subgraph G has the same vertex set as H.
e Possibly not all the edges

e "G spans H".
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Graph ADT

e |n computer science, a graph is an abstract data type (ADT)

e that consists of
e aset of nodes and

e 3 set of edges

e establish relationships (connections) between the nodes.

e The graph ADT follows directly from the graph concept from
mathematics.
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Representation (Matrix)

e Incidence Matrix

e ExV

e [edge, vertex] contains the edge's data
e Adjacency Matrix

e VxV

 Boolean values (adjacent or not)

e Or Edge Weights
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Representation (List)

Edge List
Undirected Graph s

[[0,1],[0,2],[0,3],[1,2],[3,2]]

Adjacency Matrix
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Adjacency List

&

[[1,2,3],
10,2],
[0,1,3],
[0,2]]
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Graph Algorithms

e Shortest Path e Biconnected Component / Articulation Point
e Single Source e Bridge
e All pairs (Ex. Floyd Warshall) e Graph Coloring
e Network Flow e Euler Tour
e Matching e Hamiltonian Tour
e Bipartite e Clique
e Weighted e |somorphism
e Topological Ordering e Edge Cover
e Strongly Connected e Vertex Cover
e Visibility
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Graph Technologies

Wl Graph Databases

* Technologies used primarily for transactional online graph persistence, typically accessed directly in

O
G h D B real time from an application.
ra p e They are the equivalent of “normal” online transactional processing (OLTP) databases in the relational
world.

Offline Graph Analytics

e Technologies used primarily for offline graph analytics, typically performed as a series of batch steps.
* These technologies can be called graph compute engines.
e Used for analysis of data in bulk, such as data mining and online analytical processing (OLAP).
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Relahorskaps Matter
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Back to One Machine

e Graph Databases are tailored for OLTP workloads.

e Typically, you are interested in selecting the subset of your graph
based on a condition and then operate on that.

e Most of them work in a centralized fashion
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The Case of Graph OLAP

e OLAP queries over the entire graph will not be so efficient (why?)

e Graph OLAP algorithms are ofte iterative, and need to process
the whole graph.

e Hard to Scale out because graph are hard to partition

e |fyou're interested join our Spring courses LTAT.02.003 and
LTAT.02.010
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Graph DBs VS. RDBMSs

« RDBs are well fitted to find generice
gueries, thanks to the internal structure
of the tables.

e Aggregations over a complete dataset
are "easy'.

e However, Relational databases struggle
with highly connected domains.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

User
UserlD | User | Address Phone Email Alternate
1 Alice | 123 Foo St. 12345678 | alice@example.org | alice@neodj.org
2 Bob | 456 Bar Ave. bob@example.org
99 Zach | 99 South St. zach@example.org
Order Lineltem
OrderlD | UserlD < OrderiD | ProductiD | Quantity
1234 ] 1234 765 2
5678 ] 1234 987 ]
5588 99 5588 765 1
Product
ProductlD | Description Handling
321 strawberry ice cream | freezer
765 potatoes
987 dried spaghetti
31
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Performance

In relational databases, the performance
of join-intensive queries deteriorates as
the dataset gets bigger.

On the other hand, graph database
performance tends to remain relatively
constant, even as the dataset grows.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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(Nope, indexes)
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Clarke's Third Law: Any sufficiently advanced
technology is indistinguishable from magic.

Agility

Despite their names though, relational
databases are less suited for exploring
relationships. Thus, the complexity is pushed
on the query language.

In graph databses, relationships are first-class
moreover, they have no schema. Thus, API
and query language are much simpler and
agile.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Flexibility

Changing schemas in Relational Databases
may break queries and store procedures or
require to change the integrity constraints.

Graphs are naturally additive, we can add
new relationships or nodes without
disturbing existing queries and application
functionality.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

35


http://rictomm.me

Graph DBs VS. NoSQL

e Are RelationalDB NoSQL?

e In principles, yes. However they do not target OLAP...
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Nosql also Lacks Relationships

e Most NOSQL databases whether key-
value, document, or column oriented
store sets of disconnected documents/
values/columns.

e This makes it difficult to use them for
connected data and graphs.

e One well-known strategy for adding
relationships to such stores is to embed
an aggregate's identifier inside the field
belonging to another aggregate.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

user; Alice
address: 123 Foo St.
phone: 12345678

email: alice@example.org
alternate: alice@neodj.org

order; 1234
order: 5678
order: 9012

order: 9012

order: 5678

order; 1234
cost: 150.00

item: abed
item: efab

item: efab

item: abcd

description: strawberry
Ice cream
handling: freezer

37
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Nosql also Lacks Relationships

 We can join aggregates at the application level

e Seeing a reference to order: 1234 in the record beginning user:
Alice, we infer a connection between user: Alice and order: 1234.

e Because there are no identifiers that "point" backward (the foreign
aggregate "links" are not reflexive.

e How to answer: Who customers that bought a particular product?

e Aggregates quickly becomes prohibitively expensive.
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Graph DBs embrace Relationships
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Popularity of Graph DBs
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Which one to choose?!'?
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1111an Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O'Reilly Media, Inc.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm


http://rictomm.me

Graph Storage and Processing

 Native Graph Storage benefits traversal performance at the
expense of making some queries that don't use traversals
difficult or memory intensive.

* Non-Native graph storage, e.g., usuing a relational backend, is
purpose-built stack and can be engineered for performance and

scalability.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Native Graph Processing

A graph database has native processing capabilities if it uses index-
free adjacency.

A node directly references its adjacent nodes, acting as a micro-
iIndex for all nearby nodes.

With index-free adjacency, bidirectional joins are effectively

precomputed and stored in the database as relationships!'*°.

11401t is cheaper and more efficient than doing the same task with indexes, because query times are proportional to
the amount of the graph searched.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 45
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FRIEND
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FRIEND
FRIEND l !
Person Person Person Person
. \ FRIEND \ FRIEND \ FRIEND .
name: Alice > name: Bob > name: Charlie > name: Davina
FRIEND FRIEND FRIEND
€ \_‘ € € \
A
FRIEND T
FRIEND
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Doubly Linked Lists in the Relationship Store

Storage

Vo

previous relationship for
start node end node

] ]

.................... ]S E—

!

name: “Bob”

next relationship for
start node end node

l

age: 25

name: “Alice”

Figure 6-5. How a graph is physically stored in Neo4j

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Non-native processing

A nonnative graph database engine uses
(global) indexes to link nodes together,

e Example:

e To find Ali- ce’s friends we have first

to perform an index lookup, at cost
O(log n).

e |f we wanted to find out who is
friends with Alice, we would have to
one lookup for each node that is
potentially friends with Alice. This
makes the cost O(m log n).

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

name: alice

Alice Davina
Alice Charlie
Alice Bob

Bob Alice

Bob Charlie
Bob Davina
Charlie Bob
Charlie Davina
Charlie Alice
Davina Charlie
Davina Bob
Davina Alice

! J
name: Bob name: Charlie

v

name: Davina
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Neo4J Graph DB!*?

e |t supports ACID transactions

e |timplements a Property Graph Model efficiently
down to the storage level.

e |tis useful for single server deployments to query
over medium sized graphs due to using memory
caching and compact storage for the graph.

e Its implementation in Java also makes it widely
usable.

e |t provides master-worker clustering with cache
sharding for enterprise deployment.

e |t uses Cypher as a declarative query language.

12 url
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Bll4

AllegroGraph Semantic Graph D

e AllegroGraph is a graph database and application

framework for building Semantic Web applications.
e |t can store data and meta-data as triples. S PA R I
e |t can query these triples through various query

APIs like SPARQL (the standard W3C query
language).

e |t supports RDFS++ as well as Prolog reasoning
with its built-in reasoner.

e AllegroGraph includes support for Federation,
Social Network Analysis, Geospatial capabilities
and Temporal reasoning.

M https:/franz.com/agraph/allegrograph/
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Graph Data Models

* Two Popular Graph Data Models:
e Edge-Labelled Graphs
e Property Attributed Graphs

twitter: @ragab70
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Property Graphs Vs. Edge-Labelled Graphs

e Edge-Labelled Graphs are widely adopted in practice. E.g. Resource
Description Framework (RDF) (Figure in the previous slide).

e However, it is often cumbersome to add information about the edges to
an edge-labelled graph.

e For example, if we wished to add the source of information, for example,
that the acts-in relations were sourced from the web-site IMDDb.

e Adding new types of information to edges in an edge-labelled graph may
thus require a major change to the graph's structure, entailing a significant

cost.
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Property Graph Example

N

Name: Jason Name: Chris

Role: Developer Role: Developer

—
Org: IBM Colleague Org: IBM

Name: PR 974

Issue: 970

Tag: doc fix

Variations of the Property Graph Data Model (PGM)

Direction. A property graph is a directed graph; the PGM defines edges as ordered pairs of vertices.
e Multi-graph. A property graph is a multi-graph; the PGM allows multiple edges between a given pair of vertices.

* Simple graphs (in contrast to multi-graphs) additionally require to be injective (one-to-one).

Labels. A property graph is a multi-labeled graph; the PGM allows vertices and edges to be tagged with zero or more labels.

¢ Properties. A property graph is a key-value-attributed graph; the PGM allows vertices and edges to be enriched with data in the form of key-value pairs.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Graph Query Languages

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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How To Query Graph Databases!

» Although graphs can still be (and sometimes still are)
stored in relational databases, the choice to use a graph
database for certain domains has significant benefits in
terms of querying.

 Where the emphasis shifts from joining various tables to
specifying graph patterns and navigational patterns
between nodes that may span arbitrary-length paths.

e Avariety of graph database engines, graph data models,
and graph query languages have been released over the
past few years.

o Examples of Graph DBs: Neo4j, OrientDB, AllegroGraph.

e Graph data models: Property graphs, and edge labelled
graphs and many other variations of them.

e Different modern query languages also come to the
scene such as Cypher, SPARQL, Gremlin and many more.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 55
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Graph Query Languages Core Features

e Features:
e Graph Patterns.
e Navigational "Path" expressions.
e Aggregation
e Graph-to-Graph queries.
e Path unwinding.
e Standardization:
e (SPARQL/SPARQL 1.1) --- Yes

e (Gremlin,G-
Core,Gremlin,GraphQl,Cypher)--- No

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Pattern Matching and Graph Navigation

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm
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Graph Pattern Matching VS. Graph
Navigational

e Graph query languages vary significantly in terms of
style, purpose, and expressivity.

 However, they share a common conceptual core:

e Graph pattern matching consists of a graph-
structured query that should be matched against
the graph database

o e.g. find all triangles of friendships in a social
network.

» Graph navigation is a more flexible querying
mechanisms that allows to navigate the topology of
the data.

e e.g find all friends-of-a-friend of some personin a
social network.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 58
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Graph Pattern Matching

For matching graph patterns we classified the main
proposals for the semantics into two categories:

« Homomorphism-based: matching the pattern
onto a graph with no restrictions.

* Isomorphism-based: one of the following
restrictions is imposed on a match:

* No-repeated-anything: no part of a graph is
mapped to two different variables.

* No-repeated-node: no node in the graph is
mapped to two different variables.

 No-repeated-edge: no edges in the graph is
mapped to two different variables.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

Query

Query match
-

Graph
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Basic Graph patterns VS. Complex Graph
patterns

e Basic Graph Patterns (BGPs) are just
graph to match within the bigger graph
database. BGPs are the core of any
graph query language.

e Complex Graph Patterns (CGPs) extend
BGPs with some additional query
features such as UNION, Difference,
Projection, Optional (aka left-outer-
join), and Filters.

60
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CGPs Operators: Projection

e |Like SELECT in SQL, is used also to select project on specific
outputs.

e Example: retrieve only the names of actors who starred together
In Unforgiven

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 61
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CGPs Operators: Union

 |ntended to merge the result of two queries

e Let $Q1% and $Q2$% be two graph patterns. The union of $Q1%
and $Q2% is a complex graph pattern whose evaluation is
defined as the union of the evaluations.

e Example: find the movies in which Clint Eastwood acted or which he
directed.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 62
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CGPs Operators: Difference

e The difference of $Q1% and $Q2% is also a complex graph
pattern whose evaluation is defined as the set of matches in the

evaluation of $Q1% that do not belong to the evaluation of
$Q2$%.

e Logically a form of negation

e Example: * find the movies in which Clint Eastwood acted but
did not direct™.
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CGPs Operators: Optional

e This feature is particularly useful when dealing with incomplete
iInformation, or in cases where the user may not know what
information is available.

e Essentially a Left-join

e Example: Find the information relating to the gender of users is
incomplete but may still be interesting to the client, where available.
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CGPs Operators: Filter

e Users may wish to restrict the matches of a cgp over a graph
database G based on some of the intermediate values returned
using, for example, inequalities, or other types of expressions.

e Equivalent to relational selection

e Example: find all male actors that acted in a Clint Eastwood's movie
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Or find all Leonardo Di Caprio's ex girlfriends that are were above 25 yo.

LEONARDO DICAPRIO REFUSES TO DATE A WOMAN OVER 25

Leonardo's Girlfriend's Age

eonardo's Age

'03 '04 '05 '

DaPOPE®OH

Leonardo Gisele Bar Blake Erin Toni Kelly Nina Camila
DiCaprio Bundchen Refaeli Lively Heatherton Garrn Rohrbach Agdal Morrone

Hint: None
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Navigational (Path) Queries in Graphs

Navigational Path Queries

e Graph patterns allow for querying graph
databases in a bounded manner.

e Navigational Path Queries provide a
more flexible querying mechanisms (yet
more expensive) that allow to navigate
the topology of the data.

e One example of such a query is to find
all friends-of-a-friend of some person in
a social network.
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Path under Set Semantics

 Arbitrary paths: All paths are considered. More specifically, all paths in G that satisfy the constraints of P are included in P (G).

Shortest paths: In this case, P (G) is defined in terms of shortest paths only, that is, paths of minimal length that satisfy the constraint specified by P.

No-repeated-node paths: In this case, P (G) contains all matching paths where each node appears once in the path; such paths are commonly known as simple paths. This interpretation makes sense in some practical scenarios; for example, when finding a
route of travel, it is often not desired to have routes that come to the same place more than once.

* No-repeated-edge paths: Under this semantics, P (G) contains all matching paths where each edge appears only once in the path. The Cypher query language of the Neo4j engine currently uses this semantics.

Output of Navigational Queries

* As hinted at previously, a user may have different types of questions with respect to the paths contained in the evaluation P(G), such as:
¢ Does there exist any such path
e [s a particular path contained in P (G )
e What are the pairs of nodes connected by a path in P (G)
e What are (some of) the paths in P (G)
¢ We can Categorize such questions by what they return as results:
e Boolean --- (True / False) values.
¢ Nodes --- are interested in the nodes connected by specific paths.
¢ Paths --- some or all of the full paths are returned from P (G). Example:Some of the Shortest Paths.

¢ Graphs --- is to offer a compact representation of the output as a graph
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Navigational Graph Patterns (NGPs)

e Combining path queries with basic graph patterns (BGPs) gives rise to navigational graph patterns (NGPs).

e |n particular, this language allows to express that some edges in a graph pattern should be replaced by a path (satisfying certain

conditions) instead of a single edge.

e Example: Persons and movies are connected , while a person can also have an author edge connecting it to an article.

e In such a database we might be interested in finding people with finite Erdos-Bacon number, that is, people who are connected to Kevin
Bacon through co-stars relations and are connected to Paul Erdos through co-authorship relations.

~ - I
Paul Erdos |e¢—— (author° author )+-

Kevin Bacon
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ny : Person f—,

(-—{ ny : Peraon}L —1
.- -.- - s =
firstName = Julie L X NOUS g t;::::::-;:::
...... .| 1lastName=Freud g s LR
3 ; hasFollover| | country=Chile [~ 2 : knovs x
/ . )  ememaa- country=Chile
s
O e T e A |
ng . Tag ~+€5 : likes .~ | e mem-——- :
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name = U2 I date=14-09-15 ;=€ @ 1likes ;o — .
g A | Tenease : R date=15-03-14 |
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Navigational Graph Patterns (NGPs)

* Coming back to the social network, we might be interested in finding all friends of friends of Julie that liked a post with a tag that Julie follows. The navigational

graph pattern in this Figure expresses this query over our social graph.

e Extending Navigational Graph patterns with the complex operators of "Projection"”, "Optional", "Filter", "Union" and "Difference" give the rise to another new type

of them: (cngps).

e Example: Let's call these results the "recommended posts" for Julie. Now consider a copy of the same pattern to find the recommended posts for John.

xr1 : Person

firstName=Julie

| =+ T et Rty
/knows : ' Tg : hasFollower
xro : Person
firstName= x4 T4 : likes :—> rs : Post :_;1:6
s e e o e e e e_—~—~—e—e—e—e—e— 0 b e e aw e e e

1
|
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Graph Query Languages In
Action

 Cypher --- Property Graphs
e Gremlin--- Property Graphs

e GraphQL --- Edge-Labelled multi
Graphs

e SPARQL --- Edge-Labelled Graphs RDF

e G-Core --- Property Graphs
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Cypher - The Neo4J DB Query Language

 Cypher is a declarative language for
querying property graphs that uses
"patterns” as its main building blocks.

e Cypher's declarative syntax provides a
familiar way to match patterns of nodes
and relationships in the graph.

MATCH

(n)-->()
RETURN n

e |tis backed by several companies in the
database space and allows implementors
of databases and clients to freely benefit,
use from and contribute to the
development of the openCypher
language.
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Graph Patterns in Cypher (Projection)

e Patterns are expressed syntactically following a "pictorial”
Intuition to encode nodes and edges with arrows between them.

 The following queries ask for co-stars of the "Unforgiven" movie.

MATCH (x:Person)-[:acts_in]-> MATCH (x:Person)-[:acts_in]->(m:Movie
(m:Movie {title: "Unforgiven"}) {title: "Unforgiven"})
<-[:acts_in]-(y:Person ) (y:Person)-[:acts_in]->(m)
RETURN X,V RETURN X,V

INn this case, we would also get
the matches that send both x
and y to the node of Clint
Eastwood (and likewise to the
node of Anna Levine).
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Comple Graph Patterns in Cypher: Union

MATCH (:Person

{name:"Clint Eastwood"})-[:acts_in]->(m:Movie)
RETURN m.title
UNION ALL
MATCH (:Person

{name:"Clint Eastwood"})-[ :directs]->(m:Movie)
RETURN m.title
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Comple Graph Patterns in Cypher: Difference

MATCH (p:Person)-[:acts_in]->(m:Movie
{title: "Unforgiven"})

WHERE NOT (p)-[:direct]->(m)

RETURN m.title

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

76


http://rictomm.me

Comple Graph Patterns in Cypher: Optional

MATCH (p:Person)-[:acts_in]|->(m:Movie)
OPTIONAL MATCH (p)-[x]->(m)

WHERE type(x) <> "acts_in"

RETURN p.name, m.title, type(x)
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Navigational Queries in Cypher

 While not supporting full regular expressions, Cypher still allows transitive
closure over a single edge label in a property graph.

e Since it is designed to run over property graphs, Cypher also allows the star
to be applied to an edge property/value pair.

 Example: compute the friend-of-a-friend relation. The following query
selects pairs of nodes that are linked by a path completely labelled by
knows. To do this, it applies the star operator * over the label knows .

MATCH (x:Person)-[:knows*]->(y:Person)
RETURN x,vy
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Navigational Queries in Cypher

e Example 2. If we wanted to find friends of friends of Julie and return only the shortest witnessing path.
This will return a single shortest witnessing path. If we wanted to return all shortest paths, then we
could replace "shortestPath" with "allShortestPaths".

MATCH (x:Person {firstname:"Julie"}),
p = shortestPath( (x)-[:knows*]->(y:Person))
RETURN p

 Example 3. Coming back to the social network, if we want to find all friends of-friends of Julie that liked
a post with a tag that Julie follows, we can use the following Cypher query:

MATCH (x:Person {firstname:"Julie"})-[:knows*]->(y:Person))
MATCH (y)-[:likes]->()->[:hasTag]->(z)

MATCH (z)-[:hasFollower]->(x)

RETURN vy
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Navigational Queries Cypher

e Another interesting feature available in Cypher is the ability to return paths.

 Example 4. If we wanted to return all friends of friends of Julie in the graph, together with a path witnessing the
friendship, then we can use:

MATCH p = (:Person name:'"Julie")-[ :knows*]->(x:Person)
RETURN x,p

e Result will be:

X =
Node[2] ‘Node[1],:knows[1],Node[2]]
Node[1] ‘Node[1],:knows[1],Node[2],:knows[2],Node[1]]
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SPARQL - The RDF Query Language

 SPARQL is the standard query language of RDF
and become official W3C recommendation
since 2003.

e SPARQL is a pattern matching query language
over the RDF graph. SPARQL queries contain a
set of triple patterns (TPs), also known as Basic
Graph Patterns (BGPs).

e Triple patterns are similar to RDF triple patterns,
but each of the subject, predicate or object may
be unbounded variable preceded by ("?") prefix.

 SPARQL mission is to bind those variable by
matching the query patterns to triples in the
RDF dataset.
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RDF Graphs

e RDF graphs are a special type of edge-
labelled graph.

 The basic bloc is a triple <subject>
<predicate> <object>

e Nodes and edges are identified using
URIs

e Obejcts can be literals (Numbers,
strings)
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Anathomy of a SPARQL Query

(c) Query Form

(a) Dataset
Clause

(b) Where
Clause

X Y| |Z
@D TRUE-FALSE
-\ PN 2\
CONSTRUCT DESCRIBE SELECT ASK |
DS

FROM O j
FROM NAMED ° j

FILTER
TRIPLE OPTIONAL
PATTERN AND
UNION

&l
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SPARQL Graph Patterns

Let us take a closer look at how graph patterns are
applied in three practical query languages:
SPARQL, Cypher, and Gremlin.

 SPARQL: Projection

e The following SPARQL query represents a
complex graph pattern that combines the
basic graph pattern with a projection that asks
to only return the co-stars and not the movie
identifier.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm

PREFIX : <httpL//example.org#>
SELECT ?x ?y
WHERE {
?X :acts_in ?y ;
:type :Person .
?z :acts_in ?y ;
:type :Person .
?y :title "Unforgiven" ;
:type :Movie .
FILTER(?x!=?y)

}
X ?y
:Clint_Eastwood :Anna_Levine
:Anna_Levine :Clint_Eastwood
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:Clint_Eastwood

:Unforgiven

type l , :title |

\J

"Unforgiven"

:Anna_Levine
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Complex Graph Patterns in SPARQL (Union)

e This example of a union to
find movies that Clint
Eastwood has acted or
directed in.
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SELECT ?x
WHERE {

{:Clint_Eastwood :acts_in 7x .

UNION
{:Clint_Eastwood :directs 7x

X

b

-

:Unforgiven
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Complex Graph Patterns in SPARQL (Difference)

e SPARQL Difference We
could use difference to ask
for people who acted in the

movie Unforgiven but who
did not (also) direct.
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SELECT ?x
WHERE {

{?x :acts_in :Unforgiven .

MINUS

{?Xx :directs :Unforgiven .

X

:Anna_Levin
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Complex Graph Patterns in SPARQL (OPTIONAL)

e SPARQL: Optional Using SELECT ?x ?y ?z
tional d ask for WHERE 1
optional, we could ask fo f2x racts in 2y . 3
movies that actors have OPTIONAL
appeared in, and any other {7x 7z 7y |
. . . FILTER(?x != :acts_in) }
participation they had with )

the movie besides acting in
it
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Navigational Queries in Action: SPARQL

e Since Version 1.1, SPARQL permits the use of property paths.

e SPARQL Property Paths are an extended form of regular
expression.

e As a consequence, we can express any path query using SPARQL
1.1.
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Example 1

e Consider the following
SPARQL query to find all
pairs of actors who have
finite collaboration distance,
we can use

SELECT 7?x ?y
WHERE { ?x (:acts_in/acts_in*) 7?7y }
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Example 2

Consider the following
SPARQL query with a
negated property-set.

This query will

match :Unforgiven (the IRI)
and "Unforgiven" (the title
string) for ?y.

SELECT ?y
WHERE { :Clint_Eastwood (!{rdf:type, :directs})* ?vy }
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Navigational Queries in SPARQL

e Similarly, SPARQL can also express navigational graph patterns (ngps).

 Example: find all people with a finite Erdos-Bacon number can be
expressed in SPARQL as in the query below, which is a conjunction of
two RPQs, where the symbol "" denotes conjunction.

SELECT 7x

WHERE {
?x (:acts_in/”N:acts _in)* :Kevin Bacon .
?x (:author/A:author)* :Paul Erdos .

3
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Navigational Queries in SPARQL

e Likewise, SPARQL can express complex navigational graph patterns (cngps).

 Example. We can express an RDF version of the query for the posts
recommended to Julie but not to John as follows:

SELECT 7?x 7y ?z
WHERE {
{:Julie :knows+/:likes ?x ;
:hasTag/:hasFollower :Julie . }
MINUS
{:John :knows+/:likes ?x ;
:hasTag/:hasFollower :John . }

b
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Other Popular Query Languages.

e G-Core'V

e Community effort between industry and academia to shape and standardize the future of graph query
languages.

e G-Core Features:

e Composability: Graphs are inputs and outputs of the queries. Queries can be composed. The fact that G-
CORE is closed on the PPG data model means that subqueries and views are possible.

e Paths are First Class-Citizens: Paths can increase the expressivity of the language. G-Core extends graphs
models with paths (PPG). Can have labels and prosperities.

e Capture a core: Standards are difficult and politics, Take the successful functionalities with tractable
evaluation of current languages as a base to develop

117 Angles, Renzo, et al. G-CORE: A core for future graph query languages. Proceedings of the 2018 International
Conference on Management of Data. ACM, 2018.
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Other Popular Query Languages.

e GraphQL also removes redundancy, Another restriction is type restrictions.

» The following Figure (left) shows an example GraphQL query over the domain (F, A, T) and the response is in the right.

Valid query Correct result Valid query Correct result
herofepisode: EMPIRE] { hero {
. = name name: Luke
herofepisode: EMPIRE] { hero { Siends { friends: [
name name: Luke name { name: R2-D2
: RaA ) Id: 2001 }
friends { fnends: | ¥ Oiilee
on Droid { name } { name: R2-D2} name id: 1002
: friends { |
on Human {id } {id: 1002 B T
name name: Han } ) )
} ] : Fields are collected
} } before answering
herolfepisode:EMPIRE] { hero: {
name name: Luke
friends { friends: [{
on Human { humanFriend:Han
humanFriend: name starships: [{
starships { starship:Falcon
starship:name length:34.37
length 3]
H >
X {
on Droid { droidFriend:R2-D2
droidFriend:name primaryFunction: Astromech
primaryFunction 3]
3 X H
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Graph Query Languages Features Comparison

Focus

Supported Graph Data

model

Standardization

Easy to learn

Syntax

Composability
Paths Storage

GRAPH VIEWS &
Subqueries

Semantics of Pattern
Matching

Declarative

Output

Navigational Queries

RDF, LOD
Datasets

RDF(Edge-
labelled graph)

Yes “w3cC”

Yes

SQL-like

NO
NO

NO

homomorphism-
based, bags

Declarative

Table of nodesor
edges/Boolean

YesUsing “Path
Prosperities”,
Arbitrary Paths,
Sets

General

Property Graph

NO

YES
SQL-like

YES Cypher ..
NO

NO

no-repeated-
edges, bags

Declarative

Paths, Table
nodes oredges/
Boolean

YES using RPQs,
no repeated
edges, Bags
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Navigation-Traversal

Property Graph

NO

NO

Functional
Programming

NO
NO

NO

homomorphism-
based, bags

Declarative

Nodes/ Paths

YES using RPQs,

Arbitrary Paths, Sets

General & Graph
Composability

Property Graph

NO (attemptto
standardize)

Yes

SQL-like

YES
YES

YES

Imperative

Always GRAPHS

Web Data Access

Edge- labelled graph

NO

YES

REST Like Query

NO

NO

NO * SPARQL may support subqueries but not
Views.

Declarative

Values * GraphQl can work with SQL tables (RDBs) and
alsoreturntables.

NO * Supported Only from SPARQL 1.1

95


http://rictomm.me

